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It is shown that there is a more direct extension of the well-known Funda-
mental Theorem of Calculus (FTC) to the case of several variables than the
one provided by the General Stokes’ Theorem.

1 The Theorem

Let C(Rn) denote the set of continuous real-valued functions of n real variables. For
f ∈C(Rn) and a,b ∈ Rn we defineZ b

a
f (x)dx :=

Z bn

an

(
. . .

(Z b1

a1

f (x1, . . . ,xn)dx1
)
. . .

)
dxn , (1)

where it is not assumed that ai ≤ bi and it is understood that reversal of boundaries
changes the sign of the integral. Further we define

d
dx

f (x) := f ′(x) :=
∂

∂x1
· · · ∂

∂xn
f (x1, . . . ,xn) (2)

if the objects on the right hand side (i.e. the limits involved) exist and depend on x in
such a way that f ′ ∈C(Rn). Let C̃(Rn) denote the set of f s for which f ′ is defined in this
sense. Finally we define that F is an antiderivative of f ∈C(Rn) iff F ∈ C̃(Rn) and F ′ = f .

The First Fundamental Theorem of Calculus states thatZ b

a
f (x)dx = F

∣∣b
a , (3)

for all a,b ∈ Rn, where F is any antiderivative of f and

F
∣∣b
a :=

1

∑
ε1,...,εn=0

(−1)ε1+...+εnF(ε1a1 + ε1b1, . . . ,εnan + εnbn) , εi := 1− εi . (4)
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This sum of 2n terms reads for n ∈ 1,2,3 as follows

F(b1)−F(a1) ,

F(b1,b2)−F(b1,a2)−F(a1,b2)+F(a1,a2) ,

F(b1,b2,b3)−F(b1,a2,b3)−F(a1,b2,b3)+F(a1,a2,b3)
−F(b1,b2,a3)+F(b1,a2,a3)+F(a1,b2,a3)−F(a1,a2,a3) .

(5)

and is an alternating sum over values which F takes at the 2n vertexes of the domain
of integration, which we simply call a rectangle, following Loomis and Sternberg [4], p.
324 ( an orthodox denomination would be axis-parallel rectangular parallelepiped).

The Second Fundamental Theorem of Calculus says that for any a ∈ Rn

F(x) :=
Z x

a
f (y)dy (6)

defines an antiderivative F of f and that any antiderivative of f deviates from F at most
by a sum of functions each which depending only on a strict subset of the n variables
under consideration.

The differential operator ∂

∂x1
· · · ∂

∂xn
is of first order with respect to each variable indi-

vidually, so it is a very specific instance of a differential operator of order n. From the
previously stated facts one obtains a formula for f ′(x) 1 which involves only a single
limit and is also useful for numerical computation

f ′(x) = lim h→0
1

(2h)n f
∣∣x+(h,...,h)
x−(h,...,h) . (7)

2 Discussion

It is only a technical matter to proof these statements by induction, starting from their
known truth for n = 1. A more direct evidence comes from observing that the n = 1 case
implies all previous statements for functions of the type

f (x1, . . . ,xn) = f1(x1) · · · fn(xn) (8)

and, thus, for all finite linear combinations of such functions.
The present theorem contrasts with an opinion which is inherent in most teaching on

calculus and which is comprehensively stated in

http:/mathforum.org/library/drmath/view/53755.html

as follows:

1Notice that this notation is introduced here to achieve uniformity with the one-dimensional case. It is
not meant to replace the standard notion of a derivative which is about the best linear approximation
of the function near a point. I thank Michael Livshits for having pointed out this potential source of
misunderstanding.
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’In higher dimensions, there is no Fundamental Theorem of Calculus con-
necting multiple integrals with partial derivatives, so there isn’t an ”antid-
ifferentiation” process for functions of several variables. The closest corre-
spondence would probably [be?] the Divergence Theorem or Stokes Theo-
rem, which connects integrals of certain ...

...Multiple integrals can often be evaluated as iterated (or repeated) one-
dimensional integrals so that the usual techniques can be used, but this
doesn’t always work.’

Most textbooks avoid such direct statements but create the same impression by their
selection of material.

The reader will probably not escape the feeling that the stated theorem is nearly triv-
ial: In a sense, the normal FTC is simply applied to repeated one-dimensional integrals
(see the citation above). However, it is not completely trivial to find the notions that
allow to give this ‘repeated FTC’ the form and logical structure of the FTC with n as a
variable. That this works suggests that the antiderivative in n dimensions, as defined
above, is a more natural construct than it is apparently recognized to be. For instance,
it is at least a nice change in perspective do understand the area of a (planar) rectangle
as resulting from the antiderivative F(x,y) = xy of the constant function f (x,y) = 1 via
equation (4). Notice that F can be selected as not containing redundant constants (al-
though F(x,y) = xy+137x would also be a valid antiderivative of the constant function
1). The repeated integral approach, by contrast, would inject problem-related constants
(edge coordinates of the rectangle) into the result of the first integration. If expressions
are more complicated, such constants can create in the next integration step excessively
complex expressions, for which today’s computer algebra systems are unable to find
the fitting simplifications. Especially, the programming-friendly property of (4) to rep-
resent the result by evaluations of the same function for varying values of the argu-
ments will get lost in the proposed simplifications.

For a domain of integration which is a union of adjacent rectangles (a paved set in the
sense of [4] p. 326, Definition 3.1) — which is a useful approximation in computational
physics — equation (4), when applied to each of the rectangles, can easily be seen to
express the integral of a function as a sum of evaluations of any antiderivative at surface
points. So we have a simple connection between an integral of a function over such a
domain and a sum of values that the antiderivative takes on the surface. This is an exact
relation that could also be obtained from the General Stokes’ Theorem. However, due
to the edgy nature of our surface such an application could not be justified directly by
the normal textbook version of the theorem which is for smooth surfaces.

It might be instructive to see at least the formal part of this connection. We use n =
3 as a pattern for the general case: Let f be the function to be integrated and F an
antiderivative of f . We consider the differential form

ω :=
1
3

[(
∂

∂x2

∂

∂x3
F

)
dx2∧ dx3 +

(
∂

∂x3

∂

∂x1
F

)
dx3∧ dx1 +

(
∂

∂x1

∂

∂x2
F

)
dx1∧ dx2

]
(9)
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which obviously satisfies

dω =
(

∂

∂x1

∂

∂x2

∂

∂x3
F

)
dx1∧ dx2∧ dx3 . (10)

Then the General Stokes’ Theorem says for suitable subsets Ω⊂ R3 with surface ∂ΩZ
Ω

f (x1,x2,x3)dx1 dx2 dx3 =
Z

Ω

(
∂

∂x1

∂

∂x2

∂

∂x3
F(x1,x2,x3)

)
dx1∧ dx2∧ dx3

=
Z

Ω

dω =
Z

∂Ω

ω .

(11)

If here Ω is a rectangle, the surface ∂Ω is the union of six two-dimensional rectangles.
Due to the particular form of ω, the integrals over these surface parts are can directly
expressed in terms of values of F by means of (3) for n = 2. Adding the contributions
from the six faces, we get the same result which gave (3) for n = 3 directly.

It is natural that Stokes’ Theorem gives the result not at once but iteratively since ω

does not contain the ’full antiderivative F’ but only antiderivatives with respect to a
single variable: Let us choose functions F1,F2,F3 such that ∂

∂x1
F1 = ∂

∂x2
F2 = ∂

∂x3
F3 = f

then ω from (9) can also be written

ω :=
1
3

(
F1 dx2∧ dx3 + F2 dx3∧ dx1 + F3 dx1∧ dx2

)
. (12)

Whereas the General Stokes’ Formula can be viewed as performing one of the three
integrations (by transforming a volume integral into a surface integral) the formulas
(3), (4) do the whole integration at once, just as (7) defines a product of three differential
operators by a single limit.

In all cases where it is feasible to compute F , it is even more feasible to compute
F1,F2,F3 and thus ω. For sufficiently regular domains Ω such as spheres, this surface
integral

R
∂Ω

ω may be an advantageous representation of the original volume integralR
Ω

f dx1 dx2 dx3.
Formulas (5) — for sufficiently regular F — as a means to define a (not necessarily

positive) measure are studied in [2], p. 205–207 and in a hidden manner in [1] p. 85.
Both sources deal explicitly only with two variables. They then introduce, without
mentioning the name, what is known as the Radon-Nikodym derivative of this measure
with respect to the Lebesgue measure. Riesz calls this ‘a derivative of a very particular
type’ and it is only in a well hidden statement that it is identified as ‘the mixed second
derivative of a function f (x,y)’. Another connection to well-known facts can be found
in [3], p. 3–4 in a study of the partial differential equation uxy = f (x,y).

I came to consider the matter by the practical need (for the work [5]) to have
an efficient explicit formulas for the electrostatic potential of a rectangular patch of
uniform surface charge. Here, the computer algebra system Mathematica allowed
to find Integrate[Integrate[1/r,x],y] (for r :=

√
x2 +y2 +z2, z is treated as a parame-

ter here) and thus an antiderivative of 1/r. Then the integral of the Coulomb po-
tential over a rectangular region of the x-y-plane follows from the ’First FTC for 2
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variables’ in a form that, due to the repetitive structure of equation (4), can be pro-
grammed compactly. That the required antiderivative can also be requested in the
form Integrate[1/r,x,y] (which seems to be an un-documented feature of Mathemat-
ica so far) shows that Wolfram Research is aware of the concept of an antideriva-
tive with respect to several variables. Since there seems to be no automatic way
for Mathematica to produce a purely real result for the antiderivative of 1/r, one
has to interfere manually which could introduce errors (see, however, the addition
2010-01-02). Here it helps that the correctness of an expression for the antideriva-
tive can easily be checked by differentiation. See the figure entitled ’Now correct’ in
www.ulrichmutze.de/talks/ica1.pdf (1.2MB) for a pictorial representation of the elec-
trostatic potential of a charge patch. The representation of the rectangular charge patch
as a C++ class ‘PatchCharge’ can be found in sections cpmforcesx.h and cpmforcescpp.h
of www.ulrichmutze.de/softwaredescriptions/cpmlisting.pdf (3.7 MB).

Addition 2010-01-02: The above reported behaviour of Mathematica referred to
version 6 of that program. Today, Mathematica 7 evaluates the expression Inte-
grate[1/r,x,y] virtually instantaneously as the real expression
-x + z ArcTan[x/z] - z ArcTan[(x y)/(z Sqrt[xˆ2 + yˆ2 + zˆ2])] +

y Log[2 (x + Sqrt[xˆ2 + yˆ2 + zˆ2])] + x Log[2 (y + Sqrt[xˆ2 + yˆ2 + zˆ2])].
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[2] W.L. Smirnow: Lehrgang der Höheren Mathematik Teil V, Deutscher Verlag der
Wissenschaften, Berlin 1962

[3] R. Courant and D. Hilbert: Methods of Mathematical Physics, Volume II Partial
Differential Equations, Interscience Publishers, New York and London 1962

[4] Lynn H. Loomis and Shlomo Sternberg: Advanced Calculus, Addison-Wesley 1968

[5] U. Mutze, E. Stelter, T. Dera: Simulation of Electrophotographic Development, Fi-
nal Program and Proceedings of IS& T’s NIP19: International Conference on Digital
Printing Technologies September 28 - October 3, 2003 (IS& T: The Society for Imag-
ing Science and Technology, Springfield VA, 2003) p.57.

Last modification: 2010-01-02
Original (2004) at

www.ma.utexas.edu/mp_arc/c/04/04-165.pdf


	The Theorem
	Discussion

