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This paper describes a method to simulate the dynamics of granular sys-
tems consisting of irregularly shaped grains. This method is a simplifica-
tion and partial improvement of a method that has been developed and
employed earlier in simulating the toning process in electro-photographic
copiers. Here, grains are modeled as rigidly connected overlapping spher-
ical particles. For each grain a bounding sphere around the center-of-mass
is known. Therefore, it can efficiently be decided whether two particles in-
tersect and thus exert contact forces upon each other. A second order time
stepping algorithm for such grains is given which needs only one evalua-
tion of the inter-particle forces in a time step. In a ten grain example system
a favorable but poorly understood phenomenon of energy restoration is ex-
emplified.

1 Introduction

Granular media consist of movable, relatively stable, entities that are usually referred
to as particles or as grains. In this paper we consider a specific computational model
according to which grains are made of overlapping spheres which are rigidly connected
and which exchange forces with the spherical components of adjacent grains according
to any suitable model for forces between spherical particles. This model of polyspherical
grains combines the simplicity of spherical particle models [2] with the shape flexibility
of polyhedral models [3], [4], [5] and spherosimplicial ones [6]. Polyspherical grains
were considered recently by several authors [7], [8], [9].

The motivation for developing this model was an industrial project (which started in
April 1998) concerning the simulation of the toning process in copying machines that
employ rotating magnetic brush technology [10]. In these machines, toner particles are
temporarily bound to hard-magnetic carrier particles by tribo-electric charges and get vi-
olently transported by a collective motion (chain flipping) that a locally rotating magnetic
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field induces in the system of carrier particles. Finally, the strong electric fields emanat-
ing from the electrostatic image on a film loop, together with mechanical de-acceleration
forces, free the toner particles from their carriers and let them settle on the film loop
where they contribute to the development of that image. (Toning is only one step in a
process chain usually written as cleaning, charging, exposure, toning, transfer, fusing.)

As seen in the microscope, carrier and toner particles are quite irregularly shaped
and one expects that the contact between these particles will be stabilized more by in-
terference of visible asperities than by Coulomb friction between ‘smooth’ surfaces. Al-
though one sees comparably irregular grains in sand or gravel successfully simulated
with disks or spheres, it was tempting not to rely on fictitious friction laws between
spherical bodies in a computational toning model but to mimic surface roughness on a
geometrical level. It is a natural first idea to consider strongly bound agglomerates of
spherical particles as a model for both toner and carrier particles. This does not work,
however, since bounding forces that are strong enough to prevent frequent fragmenta-
tion of grains, enforce unacceptably small time steps in a dynamical simulation 1 . For-
tunately it is possible to consider the bounds between the particles of a superparticle as
perfectly rigid 2 (with no degree of freedom associated with them) as explained in those
rare textbooks on classical mechanics that don’t hold back the most important success
of their formal methods concerning constraint motion and derive the model of a rigid
body from rigidly connected point masses (e.g. [13]). Interaction and time evolution of
rigidly connected spherical particles turned out to allow an efficient coding. Letting the
spherical particles overlap, as suggested by [14], did not introduce any complications
but strongly reduced the number of particles needed to generate useful grain shapes. In
its final three-dimensional version the resulting program ran with 14000 particles on 40
processors for weeks and was able to show the formation of the magnetic brush and its
efficiency in delivering toner particles to the right locations. Former two-dimensional
versions of the program where able to cover the whole toning process in some detail.
Various insights generated by these simulations led to actual machine improvements
[1].

Meanwhile, I created a version of this program named PaLa (for Particle Lab) 3 which
is free of the company-proprietary components related to copier technology and which
has a focus on numerical experiments with granular systems. These experiments can
be watched real time on screen and typically create an answer within minutes on a
state-of-the-art personal computer if only a few hundred particles are involved.

The present paper can be considered a translation of the most basic parts of PaLa
from commented C++ code to ‘normal language’. These parts are concerned with the
definition of polyspherical grains, of the repulsive contact forces between such grains,
and the time-stepping algorithm defining their dynamics.

This paper is intended to enable applications of the polyspherical grain model in
fields, in which the mechanical forces between contacting grains play the prominent

1There are applications, in which such grain models are useful, see [11], where such grains are called
superparticles of type cluster

2 in [11], these are the superparticles of type clump; such superparticles are also considered in [12]
3 On request, I’ll send a freely distributable Windows-executable of 1.5 MB by e-mail.



3

part and in which these forces may be given by formulas different from those imple-
mented in PaLa. Such applications would then benefit from the striking stability and
efficiency of the proposed time-stepping algorithm, especially from the high accuracy
in conserving total mechanical energy in situations in which all friction descriptors are
set to zero.

To indicate the capabilities of the present method, I list some features that it allowed
me to implement in PaLa: (i) Switchability between 2D and 3D . (ii) Switchability
between polyspherical grains and simple spherical particles. (iii) Particles can be en-
closed in a rectangular or in a spherical cavity. (iv) The rectangular box may be divided
by a grid as a model of a semi-permeable membrane for simulating osmosis; the faces
of the box record the momentum transfer from particle impacts, thus allowing us to
monitor momentum conservation and the building up of an osmotic pressure. (v) In
addition to the contact forces between particles we have forces resulting from point
masses, point charges, and electric and magnetic dipoles, all located at the center-of-
mass of the particles. (vi) Arbitrary homogeneous gravitational, electric, and magnetic
fields can be set. (vii) The total energy of the most general system configuration is
implemented as an expression which is well conserved without noticeable trend if the
timestep is not unreasonably large and if all friction forces are switched off. (viii) To
most types of program runs one can create a sequence of program runs which cover the
same time-interval with the number of integration steps multiplied by a selectable fac-
tor from one run to the next; the trajectory change from run to run can be visualized as
a plane curve which gives the distance of synchronous configurations (in some natural
metric) as a function of time. It becomes evident that for short time spans this distance
is proportional to a power of the time step (which is the order of the integrator and
which can be extracted automatically from any selected piece of the system trajectory)
and evolves into a random function of the time step for long time spans. (ix) Also the
variation of the total energy in such a run series can be analyzed for order and visual-
ized. Both the order of the integrator, and of the energy deviation can be shown to be
two by this analytical tool. Actually, the integrator algorithm, as defined in Sections 6,
7 would be consistent with my heuristics also if two substeps would be defined differ-
ently. To decide between equally plausible alternatives, I used numerical experiments
based on this tool.

2 On vectors, points, and rotations

As the grains move through space, they translate and rotate. In this section we present
the mathematics we use to describe this motion.

When dealing with space in classical physics it natural to employ affine geometry
(e.g. [15]), in which points and vectors are different mathematical entities. 4 To begin
with vectors, let V be a three-dimensional Euclidean oriented vector space, i.e. a three-
dimensional linear space over R for which a scalar product · : V ×V → R and a vector
product × : V ×V → V are defined and have the properties implied by the names. For

4 What in this paper is written as sets or maps translates directly to classes or functions in C++.
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v∈V one defines |v| :=
√

v ·v and knows that the statements v = 0 and |v|= 0 imply each
other. The determinant function, which usually is referred to in defining orientation in
linear spaces is defined by combining the two product functions

det : V ×V ×V → R , (u,v,w) 7→ (u×v) ·w .

Despite its heterogeneous definition it treats the arguments on equal footing:

det(u,v,w) = det(v,w,u) = det(w,u,v) =−det(u,w,v) =−det(w,v,u) =−det(v,u,w).

An Euclidean point space P is related to V by the existence of a map + : P ×V → P
for which the following holds:

1. For all v,w ∈ V , p ∈ P we have (p+v)+w = p+(v+w).

2. For any two points p,q∈ P there is a uniquely defined element of V , conveniently
written as q− p, for which p+(q− p) = q. For p+ 1

2(q− p) one also writes 1
2(p+q).

With any two points p,q one associates the number |p− q| (= |q− p|) as their dis-
tance. With the functions defined so far, we define the orientation associated with a
list (p0, p1, p2, p3) of points as the sign of det(p1− p0, p2− p0, p3− p0). This determinant
is zero exactly if the four points lie on a plane, in which case the points fail to define
an orientation. Notice that, by the same token, a list of three points never defines an
orientation in three-dimensional space. Having already mentioned planes as subsets of
P , we consider the subsets of P which are most important in the present context: spheres

S(r,c) := {p ∈ P : |p− c| ≤ r} for all r ∈ R+ , c ∈ P , (1)

which excel by the computational cheapness of their indicator function. Nearly all
physically relevant operations and relations in space are closely related to linear maps
V → V which form a real associative involution algebra L with the linear operations
carried over from V and with the composition ◦ of maps as the product, and the invo-
lution given by L 7→ L∗, where L∗ is the map adjoint to L. For the application of L ∈ L
to a v ∈ V we mostly write Lv instead to the orthodox notation L(v). To be sure, these
definitions imply that we have

L◦L′ v = LL′ v , (αL+α
′L′)v = αLv+α

′L′ v , Lv ·w = v ·L∗w

for all L,L′ ∈L ,v,w∈V ,α,α′ ∈R. The map L∈L is said to be orthogonal iff Lv ·Lw = v ·w
and a rotation iff, in addition, Lv×Lw = L(v×w). Further, L∈L is said to be symmetric iff
Lv ·w = v ·Lw and skew-symmetric iff Lv ·w =−v ·Lw. In these four definitions the quan-
tification ’for all v,w ∈V ’ is understood. It is an interesting aspect of our 3-dimensional
case that the vector operations allow constructing the most useful elements of L : For
all λ ∈ R and a,b ∈ V define

λ : V → V , v 7→ λv , (2)

|a〉〈b | : V → V , v 7→ (b ·v)a , (3)
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Aa : V → V , v 7→ a×v . (4)

These all are linear maps; λ is symmetric, Aa is skew-symmetric, and the adjoint of
|a〉〈b | is |b〉〈a |; therefore Pa := |a〉〈a | is symmetric. For each linear skew-symmetric
map V → V there is a uniquely defined a such that it equals Aa. As is well known, for
each skew-symmetric map A, the exponential exp(A) is orthogonal. So let us consider
exp(Aa). Writing a = ϕ n, with a unit vector n, we have to compute the powers of An.
This is surprisingly easy due to the following convenient relations: An ◦An = Pn − 1,
Pn ◦An = An ◦Pn = 0, and Pn ◦Pn = Pn. They allow us to sum up the exponential series
and to obtain

exp(ϕ An) = Pn + cosϕ (1−Pn) + sinϕ An =: R(ϕ,n) . (5)

It turns out, that equation (5) gives the most general rotation. The representation of
rotations by (5) is in terms of a rotation angle ϕ and a rotation axis n. The angle ϕ is
determined uniquely, if restricted to 0≤ ϕ≤ π. The rotation axis is determined uniquely
if ϕ 6= π, otherwise n and −n correspond to the same rotation.

Rotations will play a decisive role in formulating a time-stepping algorithm for rigid
bodies (and polyspherical grains in particular). In this algorithm, rotations have to act
on many vectors and for many pairs of rotations R,R′ one has to form the composition
R ◦R′. It is therefore important to have fast algorithms for these operations. I use here
the method of Euler-Rodrigues parameters, which is the most efficient one known. It
seems to go back, (e.g. [16]), to the French mathematician Olinde Rodrigues, who wrote
about it as early as 1840 [17]. Several rediscoveries happened in newer times, one—in
1986—by myself [18]. Here, I simply state the result by introducing two new operations
∗ : V ×V → V and ◦ : V ×V → V :

r∗x :=
(1− r · r)x+2(r ·x)r+2r×x

1+ r · r
, (6)

r◦ r′ :=
r+ r′+ r× r′

1− r · r′
. (7)

To avoid numerical exceptions in (7) one selects a small number ε, e.g. ε = 10−12, and
replaces the nominator by ε whenever |1− r · r′| < ε 5 . The basic properties of these
operations are

R(ϕ,n)(x) = r∗x for all x ∈ V iff r = tan
(

ϕ

2

)
n , (8)

(r◦ r′)∗x = r∗ (r′ ∗x) , r◦ (−r) = 0 , r◦0 = r , r◦ r′ = (r∗ r′)◦ r (9)

which can be used to define ◦ in terms of ∗ and vice versa. Conceptually this is an
interesting step: we don’t need a new type of objects to represent rotations, instead we
have new operations of type V ×V → V which allow elements of V doing everything
that rotations are supposed to do. Nevertheless, we shall speak of rotation vectors, and

5 See [18] for evidence that this works smoothly.
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use the symbol r, to indicate that the raison d’être of the vector is to act as a rotation
x 7→ r∗x. Using the symbol R (r) for this mapping (hence R (r)x := r∗x) allows writing
the first equation in (9) as

R (r◦ r′) = R (r)◦R (r′) (10)

which motivates the notation r◦ r′. Further, (8) can be written as

R(ϕ,n) = R (tan
(

ϕ

2

)
n)

and the remaining equations in (9) read

R (−r) = R (−r)−1 , R (0) = 1 , R (r)◦R (r′)◦R (r)−1 = R (R (r)r′) .

Let us consider the computational realization of these expressions: As (6) is written,
it defines the term but taking it literally as a recipe for computation would not be wise.
What one would actually do is

s0 := r · r , s1 := 1/(1+ s0) , s2 := 1− s0 , x′ := 2x , s3 := r ·x′ ,
r∗x := s1(s2x+ s3r+ r×x′)

If one needs to compute r ∗ x for some fixed r and a multitude of x’s it pays first to
compute the 3× 3-matrix which represents R (r). Expressing everything in terms of
components one can do even better: putting r = (r1,r2,r3) and x = (x1,x2,x3) we define
x′ = r∗x by

R :=

 r1
2 +b r1r2 + r3 r1r3− r2

r1r2− r3 r2
2 +b r2r3 + r1

r1r3 + r2 r2r3− r1 r3
2 +b

 (11)

x′i := c(Ri1x1 +Ri2x2 +Ri3x3) , i = 1,2,3 , (12)

where the numbers b and c are defined as follows:

ρ :=r1
2 + r2

2 + r3
2

b :=(1−ρ)/2

c :=2/(1+ρ) .

(13)

Finally we shall need the function exp : V → V that allows us to express the rota-
tion vector r directly from the vector a := ϕn (rather than from ϕ and n separately) as
r = exp(a). This is how the connection between the Lie algebra and the Lie group of
rotations is represented in the present formalism. Equations (5) and (8) imply

exp(a) = tan
|a|
2

a
|a|

≈ a
2

, (14)

where the approximation is for |a| � 1. This function satisfies

R (exp(ta)) = exp(tAa)
exp((t + t ′)a) = exp(t a)◦exp(t ′ a) for all a ∈ V , t, t ′ ∈ R .

(15)
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For L ∈ L and r ∈ V we define the ‘rotated operator’ Lr by

Lrv := r∗L((−r)∗v) for all v ∈ V , (16)

and get

Lr = R (r)◦L◦R (−r) = R (r)◦L◦R (r)−1 , |a〉〈b |r = |r∗a〉〈r∗b | . (17)

A time-dependent rotation vector r(t) determines the time-dependent angular velocity
ω(t) by

r(t +h) = exp(hω(t))◦ r(t)+O(h2) (18)

which entails
ω(t) =

2
1+ r(t) · r(t)

(ṙ(t)+ r(t)× ṙ(t)) . (19)

For I ∈ L (not depending on t) we conclude from (15)

d
dt

Ir(t) = Aω(t) ◦ Ir(t)− Ir(t) ◦Aω(t) (20)

and thus
d
dt

Ir(t) ω(t) = Ir(t)ω̇(t)+ω(t)× Ir(t) ω(t) (21)

which gives the rate of change of angular momentum if I is the tensor of inertia as
introduced later.

3 Defining polyspherical grains

Just as a spherical particle, a polyspherical grain G has—by design—an invariable shape.
Though elastic repulsion forces between grains will be computed from formulae which
are based on the deformation of elastic spheres under forced contact, other effects of
these deformations such as a shift of the center of mass or changes in the tensor of
inertia are not taken into account, not to mention elastic waves and sound generation.
Therefore, the mechanical degrees of freedom of G are just those of a rigid body. As a
geometrical object, G is made of overlapping spheres which we shall call components of
G and which we shall describe by a list (ri)n

i=1 ∈ R+
n of radii and a list (ci)n

i=1 ∈ P n of
centers. The space occupied by the grain is the set union of these spheres and the grain
is assumed to consist of a homogeneous material. From the various physical properties
of this material we presently need only the mass density ρ. To allow for extensions, we
introduce a material property list π = (ρ, . . .). In the specific form of the model to be
presented in Section 5, there will be five more entries to π. Let Π be the set of all such
lists that agree with the requirements of our intended application. These requirements
should guide us to define a function

γ : N → C := ∪
n∈N

Cn := ∪
n∈N

Π×R+
n×P n 6 (22)

6 γ(1),γ(2),γ(3), . . . is thus a sequence of initial grain configurations to be used in building the granular
model system we are interested in. The set C of configurations is a union of sets Cn with n components.
This allows n to change from grain to grain; this n is not assumed to be related to the argument of the
function in any way.
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which acts as a ‘grain factory’ by generating a useful initial configuration of a grain for
each value of its argument. It will typically try to let basic grain properties such as
diameter or mass follow prescribed statistical distributions by making random choices.
Natural conditions that one probably should enforce are:

1. The grain would not fall into parts if only overlap would make a stiff connection
between components.

2. There are no spheres which lie completely in the interior of another sphere.

It is to be noticed, however, that the dynamics to be defined later on will always let the
spheres move as a rigid assembly irrespective of whether components are overlapping
or are separated by gaps. If there would be one sphere within another this would give
the outer sphere a harder nucleus (or the inner sphere a soft hull). Agglomerates of
soap-bubbles give a good idea of possible grain shapes. Using only a few spheres with
radii that don’t differ too much gives necessarily rather smooth shapes, whereas using
dozens of spheres with quite different radii allows us to mimic also corners and edges.
In the work [10] the grains were quite compact and built out of three to five spheres. It
is possible, however, to build more elongated shapes like boomerangs or dumbbells, or
even more complex things like a perforated shell that encloses a cavity.

An initial configuration γ(l) provides the data

ρ ∈ R+ , n ∈ N , (ri)n
i=1 ∈ R+

n , (ci)n
i=1 ∈ P n (23)

which are the input for our subsequent computation of all the quantities —such as
mass, inertial moments, and principal axes— that are needed for an algorithmic defini-
tion of grain dynamics.

3.1 Computing descriptors for shape and inertia

It would restrict the allowed arrangements of the spheres probably too much if we
would consider only cases for which we can find efficient explicit formulae for the vol-
ume, the center-of-mass, and the tensor of inertia of the configuration. Since we are
interested in strongly overlapping spheres it would certainly not be acceptable to ig-
nore the circumstance that the parts of space belonging to more than one sphere have
the same mass density as the parts covered by only one sphere. The most natural re-
sponse to this problem is to determine these quantities by Monte Carlo integration. The
complete chain of formulae will be given, since making the few necessary remarks in
general terms would not be much shorter. For simplicity we do the following com-
putations with coordinates and not within pure geometry. For this purpose we pick a
frame (u1,u2,u3,o) ∈ V 3×P , where u1,u2 are orthonormal and u3 := u1×u2, and define
coordinates by

vα := v ·uα , pα := (p−o) ·uα for all α ∈ {1,2,3} , v ∈ V , p ∈ P . (24)

For each α ∈ {1,2,3} we form the two numbers

Lα := inf{ciα− ri : 1 ≤ i ≤ n} , Uα := sup{ciα + ri : 1 ≤ i ≤ n} . (25)
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Then the set
B := {p ∈ P : Lα ≤ pα ≤Uα for all α ∈ {1,2,3}} (26)

is an enclosing box for S := ∪n
i=1 S(ri,ci) and the volume of the box is

VB := (U1−L1)(U2−L2)(U3−L3) . (27)

The indicator function χS : P → R of the set S

χS(p) := if |p− ci| ≤ ri for some i ∈ {1, . . . ,n} then 1 else 0 7 (28)

is computationally cheap (if n is not too large) which is one of the major advantages of
the present shape model. For Monte Carlo integration we define a uniformly distributed
random sequence p̃ : N → B

p̃k α := Lα +ζ3k+α−1(Uα−Lα) , (29)

where ζ : N → [0,1] is a general-purpose uniformly distributed random sequence. A
working choice is

ζk := 106 sin(k)−floor(106 sin(k)) .8 (30)

Then, by replacing integrals
R

S f (x)dx by VB
N ∑

N
k=1 χS(p̃k) f (p̃k) for sufficiently large N, e.g.

N = 104, we set for all α,β ∈ {1,2,3}

V :=
VB

N

N

∑
k=1

χS(p̃k) ,

m :=ρV ,

xα :=
1
V

VB

N

N

∑
k=1

χS(p̃k)p̃kα ,

I′αβ :=
ρVB

N

N

∑
k=1

χS(p̃k)(p̃kγ p̃kγ δαβ− p̃kα p̃kβ) ,

Iαβ :=I′αβ−m(xγ xγ δαβ− xα xβ) ,

(31)

where sum convention over repeated Greek indexes is used. Define

x := o+
3

∑
α=1

xα uα , xi := ci−x for all i∈ {1, . . . ,n} , r := sup{|xi|+ri : 1≤ i≤ n} . (32)

7 Although this linear notation of conditional terms may look unfamiliar in a non-programming context,
I use it throughout this paper. Using the traditional multi-line version instead, creates a permanent
pressure to minimize the occurrence of conditional terms for reasons of space savings at the potential
cost of clarity and completeness.

8 Traditionally, random generators avoid using floating point arithmetics and transcendental functions
for efficiency reasons that I consider no longer relevant in scientific computing. Throwing off these
restrictions, offers rich opportunities to define sufficiently chaotic one line functions as the one given
here. The present definition mimics a procedure that was once common: taking as random numbers
the successive entries in some printed function table, with the decimal point shifted a fixed number of
places to the right and replacing everything left to the new decimal point by 0. It is very plausible that
these ’less important digits’ of different entries are effectively uncorrelated.
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Obviously x is the position of the center of mass, and r is the smallest radius of a sphere
that encloses S and has x as center. The vectors xi, which encode the relative position
of the component centers to the center of mass, will be called shape vectors. The matrix
M := (Iαβ)3

α,β=1 is symmetric. Thus by a suitable algorithm we find an orthogonal matrix
O such that OMO t =: D is diagonal. D then yields the moments of inertia and O yields the
vectors associated with the principal axes

Iα := Dαα , eα :=
3

∑
β=1

Oαβ uβ , for all α ∈ {1,2,3} . (33)

The tensor of inertia, I ∈ L , is

I :=
3

∑
α=1

Iα|eα 〉〈eα |=
3

∑
α,β=1

Iαβ|uα 〉〈uβ | (34)

and its inverse is

I−1 :=
3

∑
α=1

Iα
−1|eα 〉〈eα | . (35)

It will be convenient to refer to this algorithm as two functions, both operating on the
generic grain configuration. Evaluating the center of mass defines the function

ξn : Cn → P ,

(π , (ri)n
i=1 , (ci)n

i=1) 7→ x ,
(36)

and evaluating bounding radius, shape vectors, mass, moments of inertia, and princi-
pal axes defines

ιn : Cn → Dn := Π×R+
n×R+×V n×R+×R+

3×V 3 ,

(π , (ri)n
i=1 , (ci)n

i=1) 7→ (π , (ri)n
i=1 , r , (xi)n

i=1 , m , (Iα)3
α=1 , (eα)3

α=1) .
(37)

To get rid of the n-dependence, we paste these maps together in a natural manner

ξ := ∪
n∈N

ξn : C → P , (38)

D := ∪
n∈N

Dn , ι := ∪
n∈N

ιn : C → D . (39)

It is interesting to observe that the Monte Carlo integration does not introduce physical
inconsistencies such as violating the established inequalities for the Iαβ. It only replaces
the model system with continuous mass distribution by another consistent model sys-
tem in which matter is concentrated in a dense cloud of points. If this cloud is dense
enough (it needs not to be as dense as the cloud of atomic nuclei, though) this does not
conflict with using the original continuous model for force generation and reaction to
forces.
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3.2 Adding kinematics

Consider G, that was at rest so far, moving around and record the configuration at times
close to some point in time t. Since G moves as a rigid body, there are quantities

xt ∈ P , rt ∈ V , vt ∈ V , ωt ∈ V (40)

such that the occupied space is given by (see (18) for the representation of small rota-
tions in terms of angular velocity)

S(t +∆ t) = ∪n
i=1 S(ri , xt +∆ t vt +exp(∆ t ωt)∗ rt ∗xi) (41)

to first order in ∆ t. Here, vt and ωt are the instantaneous values of velocity and angular
velocity respectively. Thus it is natural to speak of xt and rt as instantaneous values of
position and angular position. Especially for ∆ t = 0 we have

S(t) = ∪n
i=1 S(ri , xt + rt ∗xi) . (42)

It is instructive to consider the configuration belonging to S(t) as an initial configuration
and let the algorithm (ξ, ι) act on it. As was to be expected, one gets

ξ(π , (ri)n
i=1 , (xt + rt ∗xi)n

i=1) = xt , (43)

ι(π , (ri)n
i=1 , (xt + rt ∗xi)n

i=1) = (π , (ri)n
i=1 , r , (rt ∗xi)n

i=1 , m , (Iα)3
α=1 , (rt ∗ eα)3

α=1) . (44)

The quantities from (40) complete the list g of state descriptors of G :

g := (gc , x , r , v , ω) := (π , (ri)n
i=1 , r , (xi)n

i=1 , m , (Iα)3
α=1 , (eα)3

α=1 , x , r , v , ω) . (45)

The first seven components gc of g are constants (or parameters) which conserve the
value that function (37) gave them with the initial configuration as input. The remain-
ing components, however, are the dynamical variables of a rigid body. This means in
particular, that x is now the center of mass of the grain in the particular state symbol-
ized by g and not the center of mass of the grain’s initial configuration. The set G of all
such lists that possibly arise from the previous defining algorithm can be characterized
as

G := Gc×P ×V ×V ×V := ι(C )×P ×V ×V ×V . (46)

where the factors hold the state constants, the position, the angular position, the veloc-
ity, and the angular velocity respectively. With the rigid body in state g we associate
the momentum mv, the angular momentum Ir(ω) (see equations (34) and (16)), the kinetic
energy 1

2 mv · v + 1
2 ω · Ir(ω), and the velocity v(p) := v + ω× (p− x) 9 of any body-fixed

point p.

9In [24] ω and (p− x) are interchanged by mistake.
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4 Repulsive contact interaction of polyspherical grains

Consider polyspherical grains G and G′ in states g and g′. Since grains are rigid bodies,
their dynamics is not yet determined by giving the force F(g,g′) which G feels due to the
presence of G′. We need the torque N(g,g′) too. It is a particularity of the polyspherical
grain geometry that these two quantities are given by computationally simple formulae
from the forces between spherical particles. In the present section we leave these forces
unspecified and only assume that they vanish between particles the shapes of which
don’t intersect and that the geometrical center point of the intersection zone can be
considered the point where this contact force acts. From the state descriptors g and g′

only the components that are not related to inertia:

(π , (ri)n
i=1 , r , (xi)n

i=1 , x , r , v , ω) , (π′ , (r′j)n′
j=1 , r′ , (x′j)n′

j=1 , x′ , r′ , v′ , ω
′) , (47)

enter the definition of F(g,g′) and N(g,g′):

F(g,g′) := if |x− x′|− r− r′ > 0 then 0 else
n

∑
i=1

n′

∑
j=1

Fi j , (48)

where

Fi j := if |ci− c′j|− ri− r′j > 0 then 0 else F (π,ci,ri ; π
′,c′j,r′j ; ni j,wi j) , (49)

where F : (Π×P ×R+)2×V ×V → V is a model specific function 10 and its arguments
are defined as follows 11:

ci := x+ r∗xi , c′j := x′+ r′ ∗x′j ,

ni j :=
ci− c′j
|ci− c′j|

,

ci j :=
1
2
(ci + c′j)+

r′j − ri

2
ni j ,

wi j := v′+ω
′× (ci j − x′)−v−ω× (ci j − x) .

(50)

The contact point ci j allows us to associate a well defined torque with each of the forces
Fi j:

N(g,g′) := if |x− x′|− r− r′ > 0 then 0 else
n

∑
i=1

n′

∑
j=1

(ci j − x)×Fi j . (51)

It also allows us to define a single vector of relative velocity wi j (instead of a distribution
of such velocities) that can be used as the basic determinant of friction forces.

10 the argument structure (‘declaration’ for programmers) of this function is part of the present framework,
the underlying algorithm (‘implementation’) depends on the specifics of the intended application. The
implementation (53) should be considered a pattern for importing the descriptors of any other force
model of interest into the present framework.

11In [24] the arguments of the vector products are exchanged by mistake.



13

It is important to compute the present positions ci,c′j of the spheres always from
the constant shape vectors and the dynamical variables x and r. Only then the shape
remains exactly constant during arbitrarily long simulations, wheres developing the
positions of the spheres from time-step to time-step without a memory of the initial
shape lets the shape undergo unacceptable deformations by numerical noise, unless
some shape restoration strategy is implemented.

In many practical situations, deformations of grains in contact are tiny, so that in the
present model the zones of overlap between components of different grains will be tiny.
Then the concept of a contact point as used above is clearly appropriate. It should be
noticed, however, that the spirit of the soft-particle model is to make particles softer
than they are in reality in order to allow larger time steps in simulations of dynamics.
Then the zones of overlap may cover a substantial part of the smooth surface fragments
of grains and probably will extend over two or more such fragments; this amplifies
the repelling force in the transition region between spheres so that the profile of the
grain gets flattened. Also the concept of a contact point becomes vague. This is not a
conceptual problem since the very definition of the shape as a union of spheres is also
only an approximation to the shapes that occur in a real granular system for which the
present framework is intended to provide a model.

The force F(g, t) and the torque N(g, t) which G feels at time t due to the presence
of external fields—such as gravity—and of confining walls—such as the supporting
ground for a pile of sand— can be easily introduced along these lines; this will not be
carried out here but is implemented in PaLa.

5 A force model for polyspherical grains based on Hertz
formulas for repulsion of elastic spheres

Here I describe the contact forces (excluding adhesion which significantly influences
the toning process) and the friction forces in the form that worked best in toning simu-
lations and which is implemented in PaLa. Here one uses the material data

π := (ρ , E , σ , δ , µ , ν) (52)

where the meaning is as follows:

1. E: Young’s modulus (0 ≤ E)

2. σ: Poisson’s ratio ( 0 ≤ σ ≤ 0.5)

3. δ: square of the coefficient of normal restitution ( 0 ≤ δ ≤ 1)

4. µ: coefficient of friction ( 0 ≤ µ ≤ 1)

5. ν: a small regularizing velocity to smooth out the direction discontinuity of the
friction law. For an integrating time step ∆ t one should have 0≤ ν∆ t � ri for all i∈
{1, . . . ,n}.
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The function F of the previous section is implemented as follows:

F (π,c,r ; π
′,c′,r′ ; n,w) := if d > 0 then 0 else Fn n− µ̃Fn

ν̃+wt
wt , (53)

where

d := |c− c′|− r− r′ , wt := w−wn n , where wn := w ·n , wt := |wt | . (54)

The step to define µ̃ and ν̃ will be formulated as to give also quantities to be needed
in the next step: Take from π the data E,σ,δ,µ,ν and from π′ the corresponding data
E ′,σ′,δ′,µ′,ν′. Denoting by H(x,y) the harmonic mean of x and y, we define

Ẽ := H(
E

1−σ2 ,
E ′

1−σ′2
) , r̃ := H(r,r′) , δ̃ := H(δ,δ′) , µ̃ := H(µ,µ′) , ν̃ := H(ν,ν′) (55)

and
Fn := if wn > 0 then δ̃ ·FHertz else FHertz , (56)

where

FHertz :=
√

3
2

Ẽ
√

r̃ (−d)3/2 . (57)

Here the usage of the harmonic mean to combine data from various grains, is well-
founded within the Hertz formula [19]; it is only a very formal device for the dissipation
descriptors. In the application [10] I did not use different values for these quantities for
different grains, so that the question did not arise. If different values are to be used, it
is necessary to combine material data from different grains in a symmetric manner—
otherwise one would violate F(g,g′) = −F(g′,g). To be sure, the Hertz formula is here
taken only as a semi-realistic model for elastic repulsion; certainly the areas where the
surfaces of two overlapping spheres meet will be harder to deform than the surface of
a free sphere, to which (57) applies exclusively.

Here we employ conventional sliding friction with a coefficient of friction µ; this has
not to account for slip stick effects since sticking is here an effect of grain geometry
which lets projecting parts of one grain get embedded in recessing parts of the other
grain. Only if forces are strong enough to unhinge this connection, relative translation
becomes possible. Relative motion then gets damped by usual sliding friction that is
directed against the tangential relative velocity and proportional to the normal force
Fn. In order to avoid instabilities in time-stepping dynamics one better lets the friction
force go through zero when the tangential velocity changes direction. This is the role of
the small velocity ν.

6 Free motion of the rigid body

An interesting fact concerning the free motion of rigid bodies is that—unlike the transla-
tional velocity—the angular velocity is not constant. However, conservation of angular
momentum tells how angular velocity has to change during a time step. Here I give my
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version of a time stepping algorithm based on the direct midpoint method [20],[21]. The
time evolution in state space for a short time span ∆ t is written as

Φ : R×G → G , (∆ t , gc , x , r , v , ω) 7→ (gc , x , r , v , ω) , (58)

where

x := x+∆ t v ,

v := v ,

δr := exp
(

∆ t
2

ω

)
≈ ∆ t

4
ω ,

∆ω := ∆ t I−1
r (Iδr◦r (ω)×ω) ,

ω := ω+∆ω ,

∆r := exp
(

∆ t
ω+ω

2

)
≈ ∆ t

4
(ω+ω) ,

r := ∆r◦ r .

(59)

Here, the exponential function is introduced only to make the terms easier to under-
stand, actually the approximative terms are always sufficient. Recall (16) for the mean-
ing of rotation vectors as subscripts to linear mappings and (7) for the operation ◦ for
rotation vectors. In the limit ∆ t → 0 this reduces to the following equations

v̇ = 0 , ω̇ = I−1
r (Ir (ω)×ω) (60)

for the accelerations. These simply express conservation of the linear and angular mo-
mentum (see (21)). As it is characteristic for the direct midpoint method, the integrator
step (59) is divided into three sub-steps: (1) motion to the midpoint (in time) with con-
stant velocity (2) instantaneous change of the velocity according to the dynamical law,
and (3) motion with the new velocity held constant during the last half of the time step.
After the first substep the angular position is just δr ◦ r and we understand ∆ω in (59)
as ω̇∆t with ω̇ from (60). That the angular position r is shifted to δr ◦ r only in one
place and not also in I−1

r is the result of experimentation as indicated at the end of the
introduction.

7 Dynamics of systems of grains

As building blocks for the final time stepping algorithm we define, using the notation
(45):

Γ1 : G ×V → V , (g , F) 7→ m−1 F , (61)

Γ2 : G ×V → V , (g , N) 7→ I−1
r N , (62)

Γ : R×G ×V ×V → G , (∆ t , g , α , β) 7→ (gc , x , r , v+∆ t α , ω+∆ t β) . (63)

Now, we have in mind a system consisting of p grains and ask for an algorithm
(integrator) for updating the state of the system after elapse of the time span ∆ t . Among
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the state descriptors there is also the time, which is essential in situations where the
influences of the environment to the grains depend on time. In order to get an integrator
of second order also in the case of velocity-dependent forces, such as friction or Lorentz-
forces on moving charges, we extend the state space G of grains to Ge := G ×V ×V
by adding the accelerations α := v̇ , β := ω̇. This introduces no new degrees of freedom
since all these accelerations get set to 0 in the initial state. Then the integrator is a
function

Ψ : R×R×G p
e → R×G p

e , (∆ t , t , (gk , αk , βk)
p
k=1) 7→ (t , (g

k
, αk , β

k
)p

k=1) . (64)

Again, we apply the direct midpoint method that changes the velocities in the middle
of a time step in accordance with the equation of motion, wheres time evolution to this
midpoint and from the midpoint is free 12 .

The first sub-step performs free motion for a span τ := ∆ t
2 of time:

t̂ := t + τ , do for k = 1, . . . , p ǵk := Φ(τ , gk) . (65)

The second sub-step is interaction; it changes the velocities, not the positions. It
consists of three phases.

Phase 1: Correcting the velocities according to the accelerations known from the pre-
vious step:

do for k = 1, . . . , p ĝk := Γ(τ , ǵk , αk , βk) . (66)

Phase 2: Forming the forces and torques between grains and from the environment
(confining walls and external fields):

do for k = 1, . . . , p Fk :=
p

∑
l=1,l 6=k

F(ĝk, ĝl)+F(ĝk, t̂) ,

Nk :=
p

∑
l=1,l 6=k

N(ĝk, ĝl)+N(ĝk, t̂) ,

αk := Γ1(ĝk , Fk) , β
k

:= Γ2(ĝk , Nk) .

(67)

Phase 3: Correcting the velocities according to new and old accelerations:

do for k = 1, . . . , p g̀k := Γ

(
τ , ĝk , 2αk −αk , 2β

k
−βk

)
. (68)

And the third sub-step, again, performs free motion:

t := t̂ + τ , do for k = 1, . . . , p g
k

:= Φ(τ , g̀k) . (69)

Notice that this integrator can be applied to any many-body problem in which the
angular position of bodies is described by rotation vectors and in which mutual forces
and torques can be expressed in terms of the state variables of the bodies.

12This is analogous to the representation of propagators in quantum mechanical perturbation theory of
first order, where this structure is reflected in the well-known first order Feynman diagrams showing
two straight lines that meet at an ‘interaction vertex’.



17

8 A numerical example on energy conservation

Although it is very important for a granular systems integrator to cope with friction,
it is even more important that the total energy remains approximately constant in the
absence of friction. Otherwise, the energy dissipation observed in a simulation would
be an obscure mixture of effects originating from the dissipation mechanisms built into
the model and from energy production due to numerical artifacts.

To get an impression of the numerical behavior of the algorithm of Sections 6, 7 we
therefore consider conservation of energy for a small and simple system for which fric-
tion is disabled (by giving all friction coefficients the value 0 and all coefficients of nor-
mal restitution the value 1). The system consists of ten grains moving inside a spherical
cavity ( radius 0.0442, physical data are given as numbers that are to be understood rel-
ative to SI units). The grains, are all copies of a single master grain. This is made of four
overlapping spheres. The volume of the grain is that of a sphere of radius 0.005 and the
radius of a minimum bounding sphere around the center of mass is 0.00604. Density
1250 and Young’s modulus 5 ·108 are those of silicon rubber. The grains are initially at
rest at random positions near to an equatorial plane inside the sphere. A homogeneous
acceleration field (like gravitation but about 2040 times stronger) perpendicular to the
equatorial plane lets the particles collide with the enclosing wall which has the same
value of Young’s modulus as the grains. The concave spherical wall tends to concen-
trate the reflected particles. Therefore, many collisions happen in which at least three
bodies are involved simultaneously. This is what the system is designed for: It should
test conservation of total energy in a situation in which the distribution of energy over
the various degrees of freedoms changes rapidly and all degrees of freedom get excited.

All data, especially the number of grains and the number of constituents of a grain
are mere numbers in a text file that controls the execution of the PaLa program (see
Section 1). More particles would make the figures 1 and 2 more busy and therefore
harder to print and to understand.

Figure 1 shows only six of the ten trajectories in order to keep them separable at least
in the beginning of the free fall phase. The wire frame representation of polyspherical
grains is straightforward: From the center of mass of a grain lines are drawn to the
centers of the spherical components. Each such component is represented by three or-
thogonal (in space) lines which are radii of the sphere. One of these radii has the same
direction as the line from the center of mass to the center of the sphere. This represen-
tation is not easy to interpret when seen printed on paper but it is very suitable for an
anaglyphic stereo representation. The PaLa program allows each run to be recorded
as a ’movie’-textfile and to be replayed under flexible control of viewing geometry (
stereo or planar, eye position, viewing direction, viewing angle) and viewing speed.
Since a single grain is represented by only a few lines, one can look (in stereo mode)
into a dense cluster of grains and gets a good impression of the relative positions of
surprisingly many grains.

In order to test energy conservation, one has to derive an expression for the poten-
tial energy of the Hertz-forces introduced in Section 5 and to extend these formulas to a
system that is enclosed in a cavity the walls of which repel the particles by Hertz-forces.
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Figure 1: Trajectories of six of the ten particles

One also has to include into the energy expression the potential energy in the accelera-
tion field. All this is straightforward and is implemented in PaLa . Figure 2 shows the
following interesting behavior of the total energy: During the first impact of most of
the grains with the wall the total energy deviates from constancy by an error term that
is proportional to the square of the time step. After a phase of frequent collisions the
energy comes back to the original value with a surprising accuracy. This phenomenon
of energy restoration (see also [21], text following equation (86)) looks curious since the
system seems to memorize this value although the direct memory of the time stepping
algorithm lasts no longer than one time step. This indicates that there may be a truly
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Figure 2: Scaled relative change of total energy for various values of the time step

conserved (up to roundoff errors) energy function in the present time-discrete model.
For symplectic integrators of Hamiltonian systems (which is not exactly our present

framework) it has been shown (e.g. [23] equation (10.5) and [22] equation (38)) that ex-
actly conserved energy functions for the time-discrete system exist if these are allowed
to depend on the time step. When displaying the energy expression inferred from the
time-continuous model one expects to get a curve that wiggles around the constant
value of the exactly conserved function. In the formula in [22], the difference between
the two energy expressions is second order in the time step which would give a scaling
behavior of the wiggling curve just as in Figure 2.

It might be instructive to see the logical elements of this interpretation exemplified
with a simple system in which everything can be done explicitly: Consider a particle
of mass m moving in one-dimensional space under the influence of a potential V (x).
Among the standard methods for solving the equation of motion of this particle is to
make use of conservation of energy which reduces the problem to a single integration.
Imitating this method in a time-discrete framework we get the following implicit inte-
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grator (which invites iteration, starting with a = 0 13)

tn+1 = tn +h = 2 tn− tn−1 ,

x(tn+1) = ah2 +2x(tn)− x(tn−1) ,

ma =−V (x(tn+1))−V (x(tn−1))
x(tn+1)− x(tn−1)

.

(70)

If one associates with the time interval [tn, tn−1] the energy

En :=
m
2

(
x(tn)− x(tn−1)

h

)2

+
V (x(tn))+V (x(tn−1))

2
(71)

then one gets exact conservation:
En+1 = En (72)

independent of the size of the time step h. Assume, we got method (70) from some-
where or we invented it based on heuristics different from energy conservation. For
the same reasons as in our previous granular system we want to test the integrator (70)
for energy conservation. We probably would represent energy as

En :=
m
2

(
x(tn+1)− x(tn−1)

2h

)2

+V (x(tn)) (73)

and would find (73) wiggling around some constant value, which we would not eas-
ily identify as the constant value of (71). In this case the wiggle displacement can be
computed quite explicitly

En−En =
h2

8
(
ma2−2V ′′

n−1 vn vn+1
)
+O(h3) , (74)

where

V ′′
i := V ′′(x(ti)) , vi :=

x(ti)− x(ti−1)
h

. (75)

For sufficiently small h the O(h3)-contribution can be neglected, and thus in all space
regions of constant potential (where a = 0 and V ′′

n−1 = 0) the value of E comes precisely
back to the constant value of E, and we thus observe energy restoration.

13In [24] the minus sign in the formula for a is missing by mistake.
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9 Conclusion

The polyspherical grain model, together with the rigid body integrator of Sections 6, 7
started as a conceptual experiment on a PC and grew into a large application running
on a super computing cluster at Cornell University. The unexpectedly robust and flex-
ible behavior of the program then motivated to shrink it again to the more manageable
complexity of the PaLa program for careful analysis and optimization of its basic prop-
erties. With the status reported here, the method seems to be ready for getting again
be applied to large granular systems. With the modest set of functions and variables as
used in the present formulation, a new coding effort could take advantage of existing
efficient data structures and functions for parallel programming (such as those of MPI)
instead of following my method which was to take from MPI only two functions for
sending and receiving character strings and to implement all higher communication
patterns myself.
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