An asynchronous leap-frog method

Ulrich Mutze *

A second order explicit one-step numerical method for the initial value
problem of the general ordinary differential equation is proposed. It is ob-
tained by natural modifications of the well-known leap-frog method, which
is a second order, two-step explicit method. According to the latter method,
the input data for an integration step are two system states which refer to
different times (we employ the terminology of dynamical systems). The us-
age of two states instead of a single one can be seen as the reason for the
robustness of the method. Since the time step size thus is part of the step
input data, it is complicated to change this size during the computation of a
discrete trajectory. This is a serious drawback when one needs to implement
automatic time step control.

The proposed modification transforms one of the two input states into
a velocity and thus gets rid of the time step dependency in the step input
data. For these new step input data, the leap-frog method gives a unique
prescription how to evolve them stepwise.

The method is exemplified with the equation of motion of a one-
dimensional non-linear oscillator describing the radial motion in the Kepler
problem. For this equation the modified leap-frog method is shown to be
significantly more accurate than the original method.

As a result, we have a second order explicit method that, just as the simple
explicit Euler method, needs only one evaluation of the right-hand side of
the differential equation per integration step, and allows to change the time
step without any additional computational burden after each integration
step. Unlike the Euler method and the explicit Runge-Kutta methods it is
robust in the sense that it allows us to reliably model the dynamics of a wide
variety of physical systems over extended periods of time.

1 Introduction
We consider the initial value problem of the general ordinary differential equation

Y(t) =F(r,v()))

*www.ulrichmutze.de

for a time-dependent quantity y which takes values in a real finite-dimensional vector
space #. Here F is a function R x # — H EI Equations of this kind arise from ordinary
differential equations of finite order and from discrete approximations to partial differ-
ential equations like the time-dependent Schrodinger equation or Maxwell’s equations.
The main concrete example in the present work will be much simpler: # = R?

F:RxR? - R?

(1, (x,v)) — (12 (i_ 1)> @

which describes the radial motion in the Kepler problem. This is a convenient test prob-
lem since its initial value problem can be solved directly without making use of time
stepping by solving Kepler’s famous transcendental equation. Since it is equivalent to
a Hamiltonian problem, there are many integration methods available (e.g. [6], [13]) to
compare with. More demanding applications of the method, in which # is a higher-
dimensional space, are considered in [17] and presented in [18]. The additions of March
2010 deal with the elementary differential equation (12) and similar equations.

The computational initial value problem associated with this equation (1) asks for an al-
gorithm which determines for each R-valued increasing list 79,71, ...,#, and each value
Yo € H (the initial value) a H-valued list vy, ..., ¥, such that the R x #-valued list
(t0,Wo0), (t1,¥1), ..., (t,,¥,) is a reasonable approximation to a solution curver — y(t),
Y(to) = Yo, of the differential equation (1) whenever the regularity properties of F suf-
fice for determining such a curve, and the gaps between adjacent r—values are small
enough. If such an algorithm works only for equidistant time lists (for which#;, —#;_; is
independent of i by definition) it is said to be synchronous and otherwise it is said to be
asynchronous. Asynchronous algorithms may be developed into adaptive ones, which
adjust their step size t;.1 —¢; to the size (according to a suitable notion of size in)
of F(t;,y;). For a R-valued function F that depends on its second argument trivially,
the initial value problem is simply the problem of computing the definite integral. It is
straightforward and instructive to specialize the proposed algorithms to this simplified
concrete situation.

Starting from the well-known leap-frog algorithm, the present article develops and
analyzes an economic and robust asynchronous solution of the computational initial
value problem associated with (T). Section 2 recalls the leap-frog method, and Section 3
carries out the general development of the new asynchronous algorithm. Section 4 will
apply this integration method and related methods to the differential equation defined

by ().

1 As is well-known, one may increase formal simplicity by transforming away the explicit -dependence
of the right-hand side of this equation, thus rendering it autonomous. However, I refrain from assuming
autonomy, since the algorithms to be considered should apply to time-dependent real-world problems
directly, without a need to transform them into autonomous ones.

2 The leap-frog method

A marvelously simple synchronous solution algorithm for the computational initial
value problem of (1) is the leap-frog method or explicit midpoint rule, see e.g. [7], eq.
(3.3.11). It seems to be the first method that has been successfully applied to the initial
value problem of the time-dependent Schrodinger equation (see [2] and the citation of
this work in [3]). It is most conveniently considered as the map

L:RxH)x(RxH) — RxH)x(RxH)

3)
((to,w0), (11, w1)) = ((t1,W1), (2, ¥2)) ,
where
t:=2t —1y,
. 4)
W == o+ (1 —10) F (11, 1) -
The equivalent form
fo+1 _1,
P —2‘110 (%)
= F(th \III)
h—1

of these equations, together with equation (), makes the reasons for choosing them
evident:
y(n2) —y(o)

H—1o +0((l‘2—l‘0)3) . (6)

F(r, w(t)) =y(n) =

Iterating the map L determines a leap-frog trajectory, ((t;,¥;))jen if (to,Wo) and (r1,y1)
are given:

(tir1Wis1) = T (L((tim1, Wi1), (6, W1))) = T (L' ((t0, Wo), (t1,91))) 7)

where 7, is the canonical projection to the second component of a pair. According to
the initial value problem we are given 1, #; (which determines, due to the assumed
synchronicity, all further ¢-values) and yy. For starting iteration @) we need also ;.
This has to be added in a way consistent with (I), e. g. by employing the explicit Euler
rule

Y1 = Yo+ (t1 —10) F (to, Yo) - (8)
One could expect (as I did for some time) that being more accurate here would improve

the accuracy of the leap-frog trajectory. The optimum definition could be expected to
be

Y1 ::W(tl)) (9)

where v is the exact trajectory determined by (1)) and y(7)) = yo. In a reasonably posed
problem ¢ is close to fy and the exact trajectory can be arbitrarily well be approximated

Wty = (1 ()2
00 po= o) v = (1-ve?)
v

/
N
/
$
<
\
\
\
\
\

A

!
I‘I
¥ ;
/
= 05 0% \\/ 15
\
\
W W
v Vi \
!
0002 Euler \) i
i\
i

—_ exact v

0004 H 4 . VNS s SN
H / / / / / / A / / / L /
\
\

- trapezoidal

- 7 Yy T e 7 Yy S AT 7
(a) Dependence of the accuracy on the initialization (b) Exact (green) and discrete trajectory (red, Euler
method. initialization).

Figure 1: Case in which Euler initialization is superior.

by any numerical method which is short term accurate irrespective of potentially unfa-
vorable long-term behavior (e.g. fourth order Runge-Kutta). An intermediate position
between methods (8) and (9) is given by employing the implicit trapezoidal rule

F(to, Wo) + F(t1, y1)

Y1 =VYo+ (1 —1o) 5 7 (10)
which can be efficiently solved by the iteration
(i)
i F (¢ R + F(t R
W =y + (1 1) F 0 YO) : SELIR v —. (11)

Let us study the behavior of these methods for a well-known non-linear differential
equation for which the exact solution can be expressed in terms of exponential functions
and thus is exactly known over any range:

V() =1-y()*, w(0)=0 thus w(r)=tanh(z). (12)

Figure(l{shows the difference between the exact trajectory and the leap-frog trajectories
according to the three initialization methods introduced above. Surprisingly the less
sophisticated method (8) works best in this case. Unfortunately this is not the case in
all interesting applications. An example for this is shown in Figure [2| for a different
differential equation. We thus have an interesting situation: Even for arbitrary y, the
iteration (7) can be used to define a leap-frog trajectory. This then is typically a zig-zag
line which tends to wiggle around a trajectory of differential equation (I) and initial
data (1, o). See Figure 3| where the leap-frog trajectory of Figure [I{b) is modified by
shifting y; considerably from its correct position. Notice the graphical manifestation of
the leap-frog algorithm: The red dots make up the discrete trajectory. In all but the first
and the last trajectory points — let an arbitrary such point be designated (#;, y;) — there
is a short solid red line which indicates the slope required by the differential equation

vt = 1 v?
w(t)
251 \
20F
M = |- v N SN Ve VAR SR AV ’ ’ ’ ’ /|
. s S0, N A ,
s / 4 / /, /
- L 4
P oo
P . ; ¢
10 o / o
Euler /
DS’, , A ,
—_ exact P S
02
- trapezoidal P P p P P 7 - -
yanw. . f . /L t
> 10 15 20 | | b5 30,
o LT 1 v 1V 71

(a) Dependence of the accuracy on the initialization (b) Exact (green) and discrete trajectory (red, Euler
method. initialization).

Figure 2: Case in which Euler initialization is inferior.

at this position. To each such short solid line, there is a parallel broken line which
connects an already constructed trajectory point (t;_;,y;—1) with the point (fiy1, it 1)
to be constructed next. The closer y; is set to this trajectory (e.g. by (8) as done in
Figure b)) the lower the zig-zag amplitude will be. The auxiliary lines, which are
evident in Figure [3|are generated also for Figure [I[b) but they collapse here to a single
polygon.

The map (3), considered as a discrete dynamical system, is thus related to the contin-
uous dynamical system associated with (1)) in a more sophisticated manner than usual:
The state space of the discrete system is (R x #) x (R x) since only this set allows the
leap-frog method to be defined as a map of states into states. Only a subset of this state
space (e. g. the one given by (8)) corresponds to potential initial states of the continuous
system ().

Equation (7) defines ; for arbitrarily large i, whereas equation (I) may drive a trajec-
tory in finite time into infinity. A well-known example is

V() =1+y()?, w0)=0 thus wy(r)=tan(r) and y(n/2)=-co. (13)

In such cases the size of the numbers involved in applying mapping L repeatedly
will grow above the size which can be handled with realistic computational resources
(which include computation time). Such exploding situations also occur if the time step
size is too large for the differential equation under consideration.

It might be instructive to discuss the close correspondence of the leap-frog algorithm
(@) to the leap-frog game (Bockspringen in German). In the variant which is of inter-
est here, there are two participants A and B in this nice dynamical sportive exercise.
There is an intended direction of motion and the participants line up in this direction,

v = (1-y®?)
)

12+

04¢

/ ;S 29 /| SN S % / ;S A v S 4
-/ S o / A /
02} // / . Y Y / / A
Yl 4 pav / / / . YAy / / yavz
/

Yy .V v / v a4
. f . t
05 10 15 20

/ /] / / / /

Figure 3: Zig-zag trajectory resulting from intentionally spoiled initialization.

B standing a few meters in front of A. This is the initial condition, which corresponds
in the algorithm to the ordered input ((fo,Wo) = A, (1, ¥1) = B). After two or three ener-
getic steps, A jumps over B, supporting himself with both palms on the shoulders of B,
thereby receiving from B a smooth kick which makes A fly to a position sufficiently far
in front of B that now the action can continue with the roles of A and B reversed, then
reversed again, and so forth. The kick which A receives from B corresponds to adding
the term (1, — o) F (11, W) (associated with B) to the term yy, which is associated with A.
The result of this addition is y,, which corresponds again to A, but at a new position.
By continuation we create terms y3,yy... . All terms with even index correspond to A,
and those with odd index to B. The index grows with the progress along the intended
direction of motion.

The algorithm can easily be shown to be reversible: Let the operator of motion reversal

be defined as
T:RxH)x(RxH) - (RxH)x (RxH) (14)
((t0,W0) (11, 91)) — ((t1,W1), (t0,W0))

then we easily verify
LoToL=T, T0T=1 (15)

from which one concludes that £ is invertible, with the inverse given by 7 o Lo 7.
This allows us to reconstruct from the last two data ((t,—1,¥u—1), (t, ¥s)) of a leap-frog
trajectory all previous components (#, i),k <n—1,

(tk,lllk) = RZ(TLn_kT((tnfhanl): (tm\l’n))) : (16)

If we would like to change time step size after having arrived at some state
ty 1, Vp_1), (tp, to value T, we may start a new synchronous trajectory with the
p—1,V¥p s Vp y y] y

state
((tp,p)s (tp +T,Wp +TF (15, W) (17)

or a potentially more accurate form which also involves y,_; (which equation (17)
simply forgets).

3 An asynchronous version of the leap-frog method

What I intend here, is to modify the leap-frog method in a way that no tradeoffs be-
tween simplicity and accuracy are involved when we start a trajectory or when we
change the time step size. A further aim is to preserve the computational simplicity of
the algorithm. In a narrower framework than (1) this modified leap-frog method has
been introduced in [17] and applied to time-dependent Hartree equations in [18].

We consider four consecutive components of a leap-frog trajectory of

(6 We) s (gt Wig1) s (B2 Wi2) 5 (fke3s Wir3) (18)

and let © be the time step. Then we define velocity-like quantities ¢ as follows:

O 1= M N VERRES F(lk+17\|fk+l) v Oky2 = w : (19)
From this definition and from (5) we obtain
l’ —_
O+ Prr2 _ Wks2 — Wi _ Fltesr, Wes1) = 0per - (20)

2 27

These equations allow us to compute (12, Wit2, dr+2) if (tk, Y, x) and T are given:

Tt =t +T, Wit =V +T0k s Oxr1 = F (15 Wir1)
k2 =1+ 7T,
Yir2 =Y +2T011 ,

Vi+2 — Wi+1
Ori2 = —

(21)

Equation (20) allows us to give the last two equations of a more symmetrical form:

Or2 = 2081 — Ok

(22)
Vir2 = Wil +TOxi2

The association (fx, Wi, dx) — (tk42, Wi+2, Ok42) can now be considered a mapping
RxH xH — RxH xH which depends on the total time step 21 and thus will be
denoted 4. The data (fx11, Wi+1, O+1) are intermediary (or temporary) with respect to
this mapping. This mapping may be iterated: Let us apply o to (fi12, Wi+2, Pk12). The
result may be denoted (14, Xk+4, Kit4) and the intermediary data as (fx+3, Xx+3, Kk+3)-
Although the formulas which define 4 are all consequences of the leap-frog law, the

iteration of 4,; does not exactly continue the leap-frog trajectory. Actually, we have
Xk+3 = Vi3 only up to terms of order t°:

Wit3 = Yiy1 +2TF (2, Wis2)

(23)
Xk+3 = W2 FT0k+2 = 2Wi2 — Wikt = Wik 1 +2 (Wir2 — Wit 1)

and thus

(Wit —Xk43)/2 = TF (iey2, Wir2) + Wit — Wiya = O(T0) . (24)

The reason for this behavior lies in the fact that in going from the normal leap-frog
algorithm to the asynchronous one we change the notion of system state. The new
state notion is more conventional in so far as it refers to a single point in time, whereas
the normal leap-frog state consists of data that refer to two points in time. If we are
given, according to the initial value problem of , the initial values #, and v, the
augmentation to a full state according to the new state notion is straightforward and
does not depend on the next time value #. It is simply given by:

o := F(to, Wo) - (25)
From (1, yo,¢0) and a list (#1,1,,...) we generate a discrete trajectory
((t0,W0,90), (t1,W1,91), (22, W2, 02),-.) (26)
by the iteration of mappings 4, defined earlier
(tir s Wit Qi) 1= A, (1,3, 00) 5 hi =t — 15 (27)

For convenience, let us rewrite the definition of 4 in fully explicit terms: For each 7 € R
the mapping

A, RxHXH — RxHXH

(28)
(t,9,0) = (1, ¥,9)
can be seen from (21)) and (22) to be defined by the following chain of formulas:
el
2)
ti=t+1,
Vi=y+10,
o' =F('), (29)
0:=2¢'-9,
Y=y 10 =y+21¢,
t:=t+1.

This algorithm corresponds to equation (8) in [17] but is more general since it does
not assume the special form of F that was considered there. Notice that the leap-frog
midpoint state data ¢’,¢’, " appear only as intermediary quantities that help to give the
algorithm an elegant form. In particular, they do not belong to the discrete trajectory
([29), generated by A. Their geometrical role becomes clear from the representation
of the final state as

_ h2 /_q) - q)/_q)
y—w+h¢+3 ol 0=0+h pa (30)

This representation suggests an interpretation in which # is replaced by a parameter
which varies from 0 to & and thus connects the states y and y by a parabolic curve in
the linear space # (and the quantities ¢ and ¢ by a linear curve). Everywhere along
this connecting curve, ¢ is the time derivative of y. The connecting parabola is easily seen
to be the Bézier curve generated by the control points (t,y),(',y'), (t,y). In this way,
the inherently time-discrete method proposes its own time-continuous representation.
This is very convenient if one needs to compare trajectories from simulations with dif-
ferent time steps. This time continuous representation is by mere interpolation; if one
needs true detail about the history between y and y one has to reduce the time step
in the simulation. It is interesting to observe that the parabolas of adjacent time steps
fit together in a differentiable manner so that a sequence of time steps gives rise to a
quadratic Bézier spline as a differentiable representation of the discrete trajectory. Fig-
ure [shows this spline curve together with the control points. The larger disks mark
the intermediary configurations (¢/,y’) and the smaller ones mark the configurations
(t,¥) (or (t,y)) which belong to the discrete trajectory. The short solid line attached to
the larger disks indicates the direction given by the direction field of the differential
equation. It coincides with the direction determined by connecting the two neighbor-
ing smaller disks. In Figure#(b), instead of the two final steps of sub-figure (a) we have
four final steps of half the step size. Notice that the size of the marking disks is coupled
to the step size so that the large disks belonging to the small steps equal in size just
the small disks belonging to the large steps. The disk at = 1.5 marks the final discrete
configuration reached by a large step and also is the first discrete configuration from
which a small step starts (so it has also to be marked with a disk half this size; the data
structure of the graphics contains such a disk, it is hidden by the larger disk since it is
not given a different color).

In the example of Figure {4 the horizontal course of the exact trajectory and the di-
rection field provided by the differential equation in its neighborhood enforce the for-
mation of a wave. The significance of this phenomenon is not clear. It is tempting to
speculate that classical particle trajectories could be transformed to wave-like processes
by discretization. Some form of discretization should be expected to happen, since the
‘computational resources of Nature” available for the evolution of any particle should
be expected to be limited.

The evolution equations can be given a form where no quantity needs to be

10

v = (1-y?) v = (1-yt?)

(a) Constant large time step. (b) Half this time step in the second half of the tra-
jectory.

Figure 4: Geometry of (29) and reduction of the time step.

copied and memorized:

t+=1,
V=10,
0+ =2MF(v)-9), (31)
V=10,
t+=r1,

This property is obviously advantageous if y and ¢ are large arrays of data as they are
in simulations of systems with many degrees of freedom. I tend to favor this property
also at a conceptual physical level. The relaxation parameter A introduced here has to be 1
for to be equivalent to (29). Values slightly less than 1 let the method work in some
cases well where otherwise large deviations from the exact trajectory would occur. Fig-
ure [5|shows an example which demonstrates drastic reduction of the deviations seen in
Figure 4, If we continue the trajectory to larger values of ¢, excessive oscillations seem
to built up unless relaxation is in place to prevent them. Figure [f]illustrates this. Here
the discrete trajectory is shown in red color by rendering only the corresponding spline
curve. The exact solution (tanh, see (I2)) is shown in green color. The phenomenon of
oscillation is related to the property of reversibility: The sequence of (y,§)- states is not
allowed to have two equal components, since going back from two equal states a suit-
ably selected number of steps one would get two different points with y = 0, although
inspection of the discrete trajectory shows that there is only one such point. If the ex-
act trajectory would not be effectively constant, the occurrence of equal y-values along
the trajectory could easily be avoided. But in the case under consideration reversibility
forces the trajectory to make use of ever new values of y and ¢ which is in conflict with
the aim to render the exact trajectory with good accuracy. The mechanism which brings
about this kind of ‘self-avoidance” seems to be poorly understood.

It might be convenient to see (29) rewritten in the self-explanatory style of [12](which

11

v = (1-yt?)

/
/
/
//
//

|
|
|
|
|
|
|
|
//

\

VI
/
/
/

Z
7
7

OO

SSNNNNRRRET
SSNNNNNNRRY
ANNNNNNRRRY
ANNNNARRNRY

N

05 10 15 /o /5/ -t
Figure 5: Situation of Figure Ekb) with relaxation (A = 0.8).
is similar to that in [13]): We write our differential equation (1)) as

and the initial data as #y,go. We complement them by setting vy := f(9,qo) and are in a
position to define a fully explicit time step which promotes data indexed by »n to data

[20]
20

[40] 15
B — 88 T
% t 5 10 15 20 3 w0 !

ng
—ost 5 10 15 £ > EY 10

@) L=0.95 (b) A =0.975

5 % 10 15 %ﬁ- 25 30 t
:
-2

(c) A=0.9875 @Ar=1.0

Figure 6: How relaxation works for a virtually horizontal exact trajectory.

12

indexed by n+1:

h h
t,H_% :tn+§ v Ayl = QH+§VV1 v Vagd :f(tn+%7 qn-‘,—%)) (33)

h
Vil :2"”4-% TV dntl =Gyl +§Vn+1 :%"‘hvn-s-% s It =tit+h.

Notice that the initial condition plays a slightly exceptional role: For n > 0 the quantities
vy and f(t,,gn) equal only approximately, whereas for n = 0 they equal exactly . The
small quantity 6, := v, — f(#x,¢gx) is an interesting one to monitor in simulations. Notice
8y =0.

Now we return to our y, ¢-notation. The symmetric grouping of the formulas in (29)
suggests that the time step map can be written as a product of three maps. For each
h € R we define the mapping

By :RxHXxH —- RxHxH

(E00) =+ (4w h0,0) o
and the mapping
C:RxHxH — RxHxH 35)
(1, 9,0) = (1,9, 2F (1,y) —9).
We than see immediately
Ay =By 0CoByy . (36)

Obviously By, is symplectic: Writing B,(t,y,9) as (¢',y',¢) (where now the apostrophe
is used again as a normal diacritical mark and not in the special meaning of (29)) we
get dy' A d¢' = (dy+hdo) A dp = dy A d. Surprisingly C is not symplectic but skew-
symplectic: Writing C (¢, y,0) as (1,y,¢') we have dy' A d¢/ = dy A (2 dF — do) = —dy A do,
since dF is proportional to dy (notice df = 0) which implies dF' A dy = 0. The product
representation then implies that also 4, is skew-symplectic. Obviously the prod-
uct of two skew-symplectic maps is symplectic. Therefore, the densified form of the
asynchronous leapfrog integrator is a symplectic explicit integrator. Symplecticity plays here
an unusual role, however, since associating the ‘dynamical states” (y,) with a system
trajectory is a peculiarity of the method; the usual description uses y alone. In a conven-
tional framework we encounter the variable ¢ only if our original differential equation
is the one which results from (1) by differentiation with respect to time:

V=0,

oF OF (37)
0=~ +--0.

ot oy

Using integrator for this equation may be non-trivial since the integrator uses F
whereas the differential equation gives only aa—f and 3%/ so that one obtains F by

13

solving a (probably partial) differential equation. The method to convert a first-order
differential equation into a second order one by differentiation with respect to time and
then to apply an explicit Stormer-Verlet integrator is the path which led me to (33). I
followed this path in order to simulate quantum mechanical systems [16], [17].

Obviously A is the identity map and A is reversible in the sense that for all 7 € R we
have — by a non-trivial cancellation of terms — the equation

A_po A, = Ay (38)

which implies that each of the maps 4, is invertible, as is the product of arbitrarily
many such mappings. As mentioned already for the corresponding situation of the nor-
mal leap-frog method, this invertibility of all discrete evolution maps does not imply
that the dynamical system defined by (1) has invertible evolution maps. The reversion
of discrete trajectories is discussed in [17] subsequent to equation (10). It is to be noted
that there is no motion reversion operator comparable to (I4). One may be tempted
totry 7 : (t,y,0) — (—1,y,—0), but this fails to satisfy 4, o7 o4, = 7 which would
correspond to (15). One should also note that the concept does not assume that the
differential equation (1)) satisfies any reversibility condition, in particular not the one
assumed in [14], after equation (1).

For a given state (7,y,), which determines a discrete trajectory by successive appli-
cation of 4, one may consider the leap-frog state (r — h,y — ho), (¢,) which, by succes-
sive application of £, creates a leap-frog trajectory which is very similar to the trajectory
considered before. Therefore, in a sense, the role of ¢ is to memorize information from
the foregoing integration step in addition to state data y. Also multi-step methods
and predictor-corrector methods improve computational economy by memorizing re-
sults from antecedent integration steps. But they do so directly, by memorizing a list of
previous states, each associated with the time of its validity. Letting information from
antecedent integration steps propagate in the form of derived quantities, such as our
¢-data, is the clue of the present method.

The connection between trajectories generated by the two leap-frog methods can be
made even more striking: The leap-frog state

(t—T,¥y—10),t+T,¥y+10), T:== (39)

and the ‘asynchronous leap-frog state’ (¢,y,9) can easily be seen to generate nearly
identical discrete trajectories by application of their respective integrators: The leap-
frog configurations (#;, ;) coincide with the ‘mid-configurations’ (¢, 145y)) of the asyn-
chronous leap-frog trajectory. So, the two trajectories differ essentially only by sub-
tleties of interpretation. They always remain closely together. Actually, apart from
the end-points of the trajectories, the situation is simple: the midpoint of two adjacent
points of one kind of trajectory is just a point of the other kind of trajectory. So the
trajectories of he two methods are woven into each other. It is to be noticed, however,
that for a given initial value (7, y(#)) starting the normal leapfrog trajectory according
to (8) or is probably considered more natural than the symmetric choice (39). Then
there is no simple exact relation between the two kinds of trajectories.

14

To consider the usage of derived quantities such as ¢ is most directly motivated by the
desire to obtain an asynchronous method, as the matter is presented here. Actually, my
motivation was a different one, namely to extend the well-behaved integrator for
differential equations of second order to the more general situation (I). The close
relation of the arising method to the leap-frog method became apparent only later.

With the integrator we have achieved for the general differential equation the
status that the Stormer-Verlet method (e.g. [13] equations (2.16-18)) achieves for the
equations of motion of Newtonian mechanics: it is second order, reversible, robust (‘ge-
ometrical integrator’). Actually we have an improvement at least over this method as
cited above: we need only one evaluation of the force term per integration step. The
property of symplecticity, which commonly is considered to be the source for robust-
ness can be claimed only at the risk of misunderstandings for our integrator, since the
concept of a phase space is present only in a degenerate form. As pointed out earlier,
my understanding is that just this rudimentary phase space structure, brought about
by the the introduction of quantity ¢, is the source for the robustness of the present
method. The reversibility of an integrator for the general equation (I) implies more
miracles than it implies for the reversible equations of Newtonian mechanics. This is
pointed out in a discussion of the ‘leaking bucket equation” to be found on my home-
page. For this equation the final part of the exact trajectory is exactly horizontal so that
we have similar but more transparent conditions as those discussed above in connec-
tion with Figure [}

4 The Kepler oscillator as a test example

Computing the motion of a point mass in the gravitation field of a stationary point
mass is what the Kepler problem is about. The radial motion in elliptic Kepler orbits (as
opposed to parabolic and hyperbolic ones) is oscillatory and can be viewed as the mo-
tion of a one-dimensional oscillator which deserves interest as a mechanical example
system. Unlike other non-linear example oscillators such as the Duffing oscillator and
the Van der Pol oscillator this system seems to be anonymous. The self-suggesting name
Kepler oscillator can be found in [15] for this system and will be used in the present arti-
cle. In the literature this name is, however, more often used for the harmonic oscillator
which is related to the Kepler problem by a regularizing transformation, known as the
KS transformation.

As is well known (e.g. [1], equation (3-14)) the radial Kepler motion is governed by

the differential equation
- J GMm ?
= Cor <_ r + 2mr2> (40)

in which L is the constant angular momentum of mass m relative to the position of the
space-fixed mass M. Of course, r is the distance between these two masses and G is
the constant of gravity. Restricting ourselves to orbits with non-vanishing L and by
selecting suitable units of time, mass, and length, we get for the quantities m, GM, and
L the common numerical value 1. Writing x for the numerical value of r and v for the

15

numerical value of r we get

. . J I 1 1 /1
X=V, V——ax<—x+zxz>—x2<x—1> (4:1)

which is the differential equation determined by (2) and also is (since, due tom =1, vis
the momentum) the system of canonical equations associated with the Hamiltonian

H(v,x):=T()+V(x):= %vz—k% <21x_1> . (42)
This quantity is known to be constant on each orbit. Since, as Figure ﬁ] shows, V attains
an absolute minimum at x = 1: V(1) = —1 we have H(v,x) > H(0,1) = —J. We consider
only states for which H(v,x) < 0 and thus x > 1 . These correspond to the elliptical orbits
in the Kepler problem; for them the radial motion has an oscillatory character. Kepler’s
ingenious method for computing the system path for given initial state (not simply the
orbit, a subject to which surprisingly many physics texts restrict their interest) can be
formulated as a simple algorithm: Given (1, xo,vo) such that Hy := H(vo,x0) < 0 and ¢,
we have to go through the following chain of formulas (see also [8], Section 4):

1
a:= ~2Ho (major semi-axis)

1
€:= 4/ 1 — — (numerical eccentricity)
a

3
n:=a 2 (mean motion)
. X0Vo
1 [
Va

E := argz (eccentric anomaly)

z=1-24
a
(43)

My := Ey — esinE (mean anomaly)

My :=My+(t; —to)n

E| := solution of E; = M +¢sinE; (Kepler’s equation)
x1:=a(l —ecosEy)

ea’nsinE,
V= ——
X1

to get the exactly evolved state (f;,x;,v;). Here the solution E of E = M + €sinE is
given by the algorithm (C++ syntax, R is the type for representing real numbers, i.e.
typedef double R;)

R solKepEqu(R M, R eps, R acc)
// M: mean anomaly, eps: numerical eccentricity, acc: accuracy e.g. le-8
{
R x01d=M+1000, xNew=M;
while (abs (x0ld-xNew) > acc) {
x0ld=xNew;

16

R x1=M+eps+*sin (xNew) ;
R x2=M+epsxsin(x1l);
xNew= (x1+x2)*0.5; // My standard provision against oscillations.
// Works extremely well
}

return xNew;

}

The computational burden for is independent of the time span #; — 1y, and it does
not matter whether this span is positive (prediction) or negative (retro-diction). Hence,
there is no relevant distinction between solution and what normally is referred to
as a closed form solution. So, in assessing the accuracy of numerical integrators, we have
the exact solution always available. In addition to the original leap-frog method and
the new asynchronous leap-frog method, we consider two established second order
methods for further comparison: The traditional second order Runge-Kutta method (e.g.
[5], (16.1.2)) and the more modern symplectic position Verlet integrator, [4], equation
(2.22). For this method there are several names in use, cf. [17], above equation (13),
and [12]. The present article refers to it as the direct midpoint integrator and recalls its
definition for the present simple situation that the forces don’t depend on the velocity.
Equation can be viewed as a single differential equation of second order

%zé(i—l) (44

and for convenience of comparison with we write this equation in a form similar
to (1) as

V() =F(,w(), W) =:9(). (45)
Since the differential equation is second order, the initial values for y and ¢ have to

come from the problem and the integrator, just as in (29), has the task to promote them
both. This is done by formulas very similar to (29):

!
=3
ti=t+71,
Vi=y+10, (46)
O:=0+nF(',y),
vi=y 410,
ti=t+1.

If one accepts to have one equation more than necessary, one may take as it stands,
and replace the defining equation for ¢’ by the definition ¢’ := ¢ +TF (',).

The implementation code for the integrators under consideration is contained in
class KepOscinfile tut2.cpp which is listed in [11]].

The orbits of the system can be uniquely parametrized by the values 0 <& < 1 of the
numerical eccentricity, which is related to the total energy Hy through €2 = 1 —2H, (see

17

01 1

0.2 H

V(X)

03 ‘\\ _

0.4 -

N

05 ~ | | | | I I
0.5 1 15 2 25 3 35 4 4.5 5

-1/x + 1/(2*x*x)
1

Figure 7: Potential function of the Kepler oscillator.

). The x-values along an orbit range between the solutions Xmin,Xmax of V(x) = Hy
and the v-values range between the solutions vmin, Vmax of T (v) — % = H,.

Most graphs to be presented here refer to a single path: The one which as an orbit
is characterized by € = 0.15, and the initial state of which is the ‘perihelion” i.e. vy =0
and that xo = xmin. The oscillation period of this path turns out to be tp = 6.501. Further
we easily find vimax = —Vmin = 0.157 and xpin = 0.870, xmax = 1.176 which agrees with
the location of the oval shape in Figure[8| As time step for stepwise integration we use
h =tp/32 to the effect that 32 computed steps cover the whole period and thus would
lead back to the initial position if there would be no integration errors. Each computa-
tion yields a discrete trajectory of 512 steps, which corresponds to 16 full "revolutions’.
Figure |8 shows that for these data the Runge-Kutta method does not create a periodic
orbit and that the orbit in phase space spirals into the outer space. At this graphical
resolution, orbits created by the other methods are hard to distinguish. Figure 0] repre-
sents the deviation of the computed position from the exact one for the four methods
under consideration. What is displayed here is not simply the difference in phase space
location but the phase space position that occurs if the state at time ¢ is back-evolved
via the exact dynamics to the initial time ¢ = 0. If the stepwise integration would not
introduce an error, the point to be displayed would come out as (0,0) in all cases. The
errors express themselves as curves (paths) with parameter and a longer curve in-
dicates a larger total error after the whole integration. Although the dependence on
the curve parameter ¢ is not shown in the curves (only the orbit is represented), the
16 approximately repeated substructures in these curves show how the error evolves
from revolution to revolution. The coordinates in these diagrams are indexed ‘relative’
which means that x-differences are divided by xmax — *min and v-differences are divided

18

0.2

0.15

0.1

0.05

-0.05

-0.1

d order Runge-Kutta method
direct midpoint integrator
asynchronous leap-frog method
leap-frog m?thod

-0.15

-0.2 ! | I I I I
0.85 0.9 0.95 1 1.05 11 115 12 1.25

Figure 8: Computed orbits in phase space.

by Vmax — Vmin. As already pointed out in [9], near equation (92), these curves can be in-
terpreted as paths in an interaction picture dynamics, which again is a dynamical system.
This kind of interaction picture considers the stepwise integration as the combined ac-
tion of the exact evolution and a “discretization interaction’ (in analogy to considering a
digitized signal as a superposition of the original analog signal and "digitization noise’).
It may therefore be fittingly referred to as numerical interaction picture. The more accu-
rate the stepwise integration method, the weaker is the interaction and the slower is the
motion seen in the numerical interaction picture. As mentioned in [9], this diagnostics
based on the numerical interaction picture is not restricted to systems for which the ex-
act solution is directly accessible; an access through stepwise back-evolution methods
is sufficient if these are, say, two orders of magnitude more accurate than the method
under investigation.

This numerical interaction picture dynamics is related to the usage of evolution op-
erators e!fl e~iH0! in quantum mechanical scattering theory and with backward error
analysis in numerical analysis of differential equations, [6], Chapter 10 , [12], Section
4, [13], Chapter 5. The aim of backward error analysis is to represent the discretization
interaction by additional terms to the right-hand side of the differential equation; in
case of Hamiltonian systems by an addition to the Hamiltonian, which is the way for
introducing interaction physicists are most familiar with. The idea of the presently pro-
posed method is to work with the dynamical systems directly without being forced to
construct an equivalent Hamiltonian, or — more generally — a modified equation. The
two movies [10] "Deformation of a phase space subset by interaction picture dynamics’
show features which one would not easily read from any modified equation of back-
ward error analysis (the converse is probably also true; it is the multitude of non-trivial

19

0.6

05| _— .
04t

0.3 |-

dv_rel

0.2 -

0.1 -

0 second order Runge-Kutta method N

direct midpoint integrator
asynchronous leap-frog method
Ieap-‘frog metho‘d

-0.1 I I I I I I ! !
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

dx_rel

Figure 9: Integration error of four computational methods in the ‘numerical interaction
picture’.

observations which enhances our understanding). Already our trajectory representa-
tion in Figures [9 shows more morphologic features than the energy-error
curves that are normally generated as a kind of fingerprint of an integrator (e.g. [13],
Fig 4.1).

Since, as already clear from Figure |8} the error of the Runge-Kutta method is much
larger than the error of the other methods, the following Figure (10| gives the corre-
sponding representation for the more accurate methods only. This figure suggests that
the direct midpoint integrator is by far more accurate than the two leap-frog integra-
tors. We will see now that this suggestion is misleading. In the application considered
in [18] it was found that the asynchronous leap-frog integrator showed similar step
size requirements as the direct midpoint integrator when a actual leap-frog step was
defined as consisting of two leap-frog steps of half the step size. Also in the present
context it makes sense to consider such a subdivision of a step. We thus define the
densified leap-frog integrators as

L:=LoL

: 47)
Ap = Apjp 0 Appr

and display the resulting error orbits in Figure Note that again there are 32 inte-
gration steps per orbit, but these are made from substeps so that only every second
computed step results in a graphical point. For such a combined step, the computa-
tional burden is the same as for one second order Runge-Kutta step, but the accuracy
is much better than for Runge-Kutta. It is plausible that only this densified version of
the leap-frog methods turns out to come close to the accuracy of the direct midpoint

20

0.45 T

04 / |
0.35 // .
0.3 //
4
p 7
0.25 Y, - -
[/{
%I 0.2 /}(] —
0.15 |- Wi 4
‘W‘
01l U i
i
s
0.05 |- &\2} 4
§;} T
oL 2 direct midpoint integrator
asynchronous leap-frog method
leap-frog method
-0.05 I I I | I
-0.05 0 0.05 0.1 0.15 0.2 0.25
dx_rel

Figure 10: Integration error of the better methods in the 'numerical interaction picture’.

method: The latter has direct access to the second derivative of the solution, whereas
the leap-frog methods only accesses the first derivative and thus can be viewed as sim-
ulating access to the second derivative by evaluating the first derivative at two different
points. One may generate corresponding diagrams for different values of eccentricity
and step size and will experience a surprising morphological stability of the curves and
their relative length. Figure[12|is an example for this. Here, the number of points per
revolution is increased to 64 in response to the increased value of the eccentricity e.

It is rather evident from all such graphs is that the asynchronous leap-frog method
has shorter and more regular error orbits than the standard leap-frog method.

21

0.14

0.12 |-

0.1

0.08 |-

dv_rel

0.06

0.04 -

0.02 |-
direct midpoint integrator
densified asynchronous leap-frog integrator
‘ densified Ie?p»frog integr?tor

L L
0.004 0.006 0.008 0.01 0.012 0.014

dx_rel

Figure 11: Integration error of the direct midpoint method together with the densified
leap-frog methods in the ‘numerical interaction picture’ for € = 0.15. Sixteen
periods at 32 steps per period.

0.12
01k - i
0.08 - —
0.06 - —
°
1 0.04 - B
>
°
0.02 - —
0L -
-0.02 - direct midpoint integrator
densified asynchronous leap-frog integrator
densified leap-frog integrator
-0.04 I I I I I | | |
-0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

dx_rel

Figure 12: Integration error of the direct midpoint method together with the densified
leap-frog methods in the 'numerical interaction picture’ for € = 0.30. Sixteen
periods at 64 steps per period.

References 22

Acknowledgment

I am grateful to Domenico Castrigiano for many discussions on the relation of discrete
mathematics to classical analysis and to Ernst Hairer for a valuable comment.

References

[1] Herbert Goldstein: Klassische Mechanik, Akademische Verlagsgesellschaft, 1963
[2] A. Askar and S. Cakmalk, J. Chem. Phys. 68, 2794 (1978)

[3] H. Tal-Ezer and R. Kosloff: An accurate and efficient scheme for propagating the
time dependent Schrédinger equation, J. Chem. Phys. 81 (9) 3967-3971 (1984)

[4] M. Tuckerman, B.J. Berne, G.J. Martyna: Reversible multiple time scale dynamics,
J. Chem. Phys. Vol. 97(3) pp. 1990 - 2001, 1992, Equation (2.22)

[5] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery: Nu-
merical Recipes in C, The Art of Scientific Computing, Second Edition, Cambridge
University Press 1992

[6]].M. Sanz-Serna and M.P. Calvo: Numerical Hamiltonian Problems, Applied
Mathematics and Mathematical Computation 7, Chapman & Hall 1994

[7] A.M. Stuart and A.R. Humphries: Dynamical Systems and Numerical Analysis,
Cambridge University Press, 1996

[8] Ulrich Mutze: Predicting Classical Motion Directly from the Action Principle II
Mathematical Physics Preprint Archive 1999-271
www.ma.utexas.edu/mp_arc/c/99/99-271.pdf

[9] Ulrich Mutze: A Simple Variational Integrator for General Holonomic Mechanical
Systems, Mathematical Physics Preprint Archive 2003—491
www.ma.utexas.edu/mp_arc/c/03/03-491.pdf

[10] Ulrich Mutze: homepage
http:/ /www.ulrichmutze.de/interactionpicturemoviel /intactl.html
http:/ /www.ulrichmutze.de/interactionpicturemovie2 /intact2.html

[11] Ulrich Mutze: homepage
http:/ /www.ulrichmutze.de/softwaredescriptions/tut.pdf

[12] Ernst Hairer, Christian Lubich, Gerhard Wanner: Geometric numerical integration
illustrated by the Stormer/Verlet method, Acta Numerica (2003) pp. 1-51 Cam-
bridge University Press, 2003

References 23

[13] Benedict Leimkuhler and Sebastian Reich: Simulating Hamiltonian Dynamics,
Cambridge Monographs on Applied and Computational Mathematics, Cam-
bridge University Press 2004

[14] T. Holder, B. Leimkuhler, and S. Reich: Explicit, time-reversible and variable step
size integration. Appl. Numer. Math., 39:367-377,2001.
http:/ /opus.kobv.de/zib/volltexte /1998 /361 /pdf/SC-98-17.pdf

[15] G. Gallavotti: Classical Mechanics
http:/ /ipparco.romal.infn.it/pagine/deposito/2005/MC.ps.gz

[16] Ulrich Mutze: The direct midpoint method as a quantum mechanical integrator,
Mathematical Physics Preprint Archive 2006-356
www.ma.utexas.edu/mp_arc/c/06/06-356.pdf (2006)

[17] Ulrich Mutze: The direct midpoint method as a quantum mechanical integrator II,
Mathematical Physics Preprint Archive 2007-176
www.ma.utexas.edu/mp_arc/c/07/07-176.pdf

[18] Ulrich Mutze: Separated quantum dynamics
Mathematical Physics Preprint Archive 2008-69
www.ma.utexas.edu/mp_arc/c/08/08-69.pdf

Last modification: 2011-05-14

	Introduction
	The leap-frog method
	An asynchronous version of the leap-frog method
	The Kepler oscillator as a test example

