
The direct midpoint method as a quantum
mechanical integrator

Ulrich Mutze ∗

A computational implementation of quantum dynamics for an arbitrary
time-independent Hamilton operator is defined and analyzed. The pro-
posed evolution algorithm for a time step needs three additions of state
vectors, three multiplications of state vectors with real numbers, and one
application of the square of the Hamilton operator to a state vector. A tra-
jectory starting from a unit-vector remains totally within the unit-sphere in
Hilbert space if the time step is smaller than 2 divided by the norm of the
Hamilton operator. If the time step is larger than this bound, the trajectory
grows exponentially over all limits.

The method is exemplified with a computational quantum system which
models collision and inelastic scattering of two particles. Each of these par-
ticles lives in a discrete finite space which is a subset of a line. The two lines
thus associated with the particles cross each other at right angle.

1 Introduction

The last few decades have seen an ever-strengthening interaction of physics, mathemat-
ics, and computing. Object oriented programming languages have provided new means for
defining models of physical systems. These computational models are as natural or as ar-
tificial as are the traditional models involving, for instance, differential manifolds and
differential equations. Unlike the traditional models, they can be executed on a com-
puter to produce results automatically which transcend the limitations of human at-
tentiveness. Object oriented programming languages are formal languages just as those
on which Mathematical Logic is based today. They incorporate a fair amount of expe-
rience on formalizing real-world situations and provide methods for abstraction and
comprehension which are similar in intent and structure to categories and functors in
mathematics and to the idealizations that constitute theories in physics. In languages in
which execution of a program has to be preceded by compilation (as, for instance, in
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C++) this procedure provides a check of syntactical correctness which is hard to obtain
for models formulated in the traditional framework of mathematical physics.

Each kind of mathematical object to be used in the following has been represented in
C++ in a way that working with these objects in programs involves not much more key
strokes than placing them on paper. For instance, the algorithm (38) can be formulated
as follows in my C++ class system 1 :

R tau=0.5*dt;
t+=tau;
psi+=phi*tau;
phi+=psi.dot().dot()*dt;
psi+=phi*tau;
t+=tau;

In an epoch that just learns to use quantum dynamics to implement computers (quan-
tum computers) we are in a position to enjoy the observation that computational mod-
els of the quantum world (and of quantum computers in particular) can be based on
classical computation where data can be stored at addressable locations (registers) in
binary format and where register states are not subjected to quantum interference.

2 A simple framework for computational quantum mechanics

Some introductions to quantum mechanics present the Heisenberg commutation rela-
tions (canonical commutation relations) as a constitutive element of the theory. From
the simple fact that each commutator of finite matrices has trace zero, and thus can’t
be equal to any non-zero multiple of the unit-matrix, one has an argument in favor of
quantum mechanical state spaces being infinite-dimensional. That this is a misleading
argument should become clear from the present article which treats quantum dynamics
in finite dimensional state spaces.

Let us recall the basic facts on operators in a general n-dimensional complex Hilbert 2

space H ( n ∈ N) and their relation to quantum theory in the simplified form which
results from the finiteness of dimension. Quantum mechanical models with state space
H can be defined in terms of linear operators in H and their interpretation as idealized
measurement devices, or as generators of symmetries. In accordance with this, there are
three important classes of operators: self-adjoint operators (i.e. the linear operators A sat-
isfying A∗ = A) to represent measurement devices (observables), skew-adjoint operators
(i.e. the linear operators A satisfying A∗ = −A) to represent generators of symmetries,
and unitary operators (i.e. the linear operators A satisfying AA∗ = A∗A = 1 := identity)
to represent symmetries. Of coarse, the adjoint A∗ of a linear operator A is defined
by 〈Aψ |ϕ〉 = 〈ψ |A∗ϕ〉 for all ψ,ϕ ∈ H , where 〈ψ |φ〉 denotes the scalar product 3 of

1I’m open to provide source code to interested readers.
2 Historically, Hilbert’s name is associated with the infinite-dimensional case only, but it is very conve-

nient to have a common name for both cases.
3 assumed to be a linear function of the second argument and a semi-linear function of the first one
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ψ and φ. The adjoint cooperates with the natural algebraic structure of linear op-
erators: (zA)∗ = zA∗, (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗ and satisfies A∗∗ = A. Since
the dimension of H is finite, we have AB = 1 ⇔ BA = 1 ⇔ A = B−1 ⇔ B = A−1. For
each skew-adjoint A, the operator exp(A) := ∑

∞
k=0 Ak/k! is unitary and the mapping

R 3 t 7→ exp(t A) defines the ‘unitary one-parameter group’ generated by A. Any op-
erator A belonging to one of these kinds is normal (i.e AA∗ = A∗A) and thus has a fam-
ily (ei)n

i=1 of n orthonormal eigenvectors: Aei = ai ei, 〈ei |e j 〉 = δi j, ai ∈ C. Any such
pair (ei)n

i=1, (ai)n
i=1 is said to be a spectral decomposition of A and the ai are said to be

eigenvalues of A. The set σ(A) := {ai : i ∈ {1, . . . ,d}} is said to be the spectrum of A,
and for each a ∈ σ(A), the linear space spanned by the corresponding eigenvectors
{ei : a = ai} is said to be the eigenspace of a and its dimension the multiplicity of a.
A is self-adjoint iff all its eigenvalues are real; iff all eigenvalues belong to {0,1} it is
said to be a projector. Equivalently, projectors can be defined as those self-adjoint op-
erators A which satisfy AA = A. Notice that, for a self-adjoint A, the ’imaginary multi-
ple’ iA is skew-adjoint and vice versa. For example, the observable H of total energy
gives rise to the generator i

h̄ H of the one-parameter group of time-translations. With
any two vectors ψ, φ one associates the linear operator |ψ〉〈φ | which maps any χ to
〈φ |χ〉ψ. It is sometimes called the dyadic product of ψ and φ. The adjoint of |ψ〉〈φ |
is easily seen to be |φ〉〈ψ |. Thus the dyadic product of two non-vanishing vectors is
normal iff these vectors are proportional to each other. For each unit-vector ψ (i.e.
‖ψ‖= 1, where ‖ψ‖:=

√
〈ψ |ψ〉), the operator |ψ〉〈ψ | is a projector. For any linear op-

erator A, one defines ‖A ‖:= Max{‖Aψ ‖ : ψ ∈ H ,‖ψ ‖= 1}. For a normal operator A
with a spectral decomposition (ei)n

i=1, (ai)n
i=1, one has ‖A ‖= Max{|ai| : i ∈ {1, . . . ,n}}

and A = ∑
n
i=1 ai |ei 〉〈ei | = ∑a∈σ(A) aEA

a , where EA
a := ∑i∈{i : ai=a} |ei 〉〈ei |. The function

σ(A) 3 a 7→ 〈ψ |EA
a ψ〉 defines the distribution of A-values in state ψ, ‖ψ ‖= 1. It deter-

mines an atomic measure on C, which for self-adjoint A is entirely concentrated in R.
For a self-adjoint operator A, the function

QA : H → R , ψ 7→ 〈ψ |Aψ〉
〈ψ |ψ〉

(1)

is continuous and the range QA(H ) is a closed interval (which may be a single point),
which contains all eigenvalues of A, and the boundaries of which are eigenvalues of A.
For each boundary point r of this interval, the inverse image Q−1

A (r) consists of eigen-
vectors of A with eigenvalue r.

Who feels relief that there are no problems with unbounded operators and with spec-
tral sets that don’t consist of eigenvalues, be warned. These difficult guests come here
in disguise: The eigenvalues of an operator may differ by many orders of magnitude
and so may the distances between eigenvalues. The difficulties then become apparent
when it comes to computation.

In the present article, finite-dimensional state spaces result from discretization of the
part of physical space in which an idealized physical system ‘lives’ in the sense that its
states can be represented as complex-valued wave functions which depend on one or
more variables that take values in this part of space. This part of space will be referred
to as the biotope of the system.
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This discretization of the biotope is used in a similar spirit as it is employed for the
numerical solution of partial differential equations or for the computational analysis of
technical (and natural) systems by means of the finite element method (FEM). It should
not be excluded that physical space is discrete per se. However, this is certainly not
relevant for systems that can be described by non-relativistic quantum mechanics. Even
with discretized space, there needs no fixed limit on the number of points to be set
in a computational model. Dynamically allocated arrays support this in all modern
programming languages. If such models make non-trivial use of their freedom, and
increase the number of state components from time step to time step in a dynamical
simulation, the computation time will also grow from step to step unless the computer
grows too (just as the universe is reported to do).

We may represent the discretized biotope by any finite set I. For any such set, we
define the Hilbert space H (I,C) as the set of C - valued, I - indexed lists ψ = (ψi)i∈I ,
endowed with the natural C-linear structure, and with the scalar product 〈ψ |φ〉 :=
∑i∈I ψi φi. The dimension of this space is obviously given by the number |I| of elements
of I. Lists with user-defined types of index and value are well supported in C++ as
a template class map〈IndexType,ValueType〉, which allowed me to code quantum dy-
namics in Fock space very compactly. For each linear operator A in H (I,C), there is a
C-valued family (Ai i′)i,i′∈I such that

(Aψ)i = ∑
i′∈I

Ai i′ ψi′ for all ψ ∈H (I,C), i ∈ I . (2)

If the indexing of discrete positions is done reasonably, and A is an operator with phys-
ical meaning, only a few i′ will contribute to this sum for a given i. The set I needs to
carry an arithmetical structure that allows finding these contributions by means of an
algorithm. An important special case is that there is a map ι : I → I such that Ai i′ = δ ι(i) i′

and hence
(Aψ)i = ψι(i) for all ψ ∈H (I,C), i ∈ I . (3)

Such a linear operator A is sometimes said to be induced by ι, and ι is said to be the in-
ducing map of A. It is easy to see that an induced operator is unitary iff its inducing map
is bijective. Obviously, the inverse U−1 of an induced unitary operator U is induced by
the inverse of the inducing map of U . We get an injective group homomorphism, when
we assign to each permutation of I the unitary operator that is induced by it.

For Hilbert spaces of this form H (I,C), the definition of tensor products is canonical:

H (I,C)⊗H (J,C) := H (I× J,C) ,

(ψ⊗φ)i j := ψi φ j for all ψ ∈H (I,C),φ ∈H (J,C), i ∈ I, j ∈ J .
(4)

Let A and B be linear operators in H (I,C) and H (J,C) respectively. Then one defines
the linear operator A⊗B in H (I× J,C) as

((A⊗B)ψ)i j := ∑
i′∈I , j′∈J

Ai i′B j j′ψi′ j′ for all ψ ∈H (I× J,C), i ∈ I, j ∈ J . (5)
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Since I× J is again a finite set, one may iterate this construction to arrive at a quantum
mechanical system with many subsystems 4 .

From a computational point of view, there is a close analogy between the discreteness
of the biotope and the discreteness of the values which a wave function can take at these
discrete positions. Every computational model which uses the built-in numbers of a
programming language, replaces the mathematical real or complex numbers by a finite
surrogate in which the arithmetic laws hold only up to numerical noise. In an object
oriented language one is free to replace the built-in numbers by any implementation of
floating point numbers of arbitrary storage size or even of dynamical storage size. In
the latter case, the number of bits needed to hold the value of a variable grows from
multiplication to multiplication. When used naively, such numbers will overload the
most capable computer before it arrived at the solution of any non-trivial computation.
Taking this into account, one may recognize computer numbers 5 of fixed storage size
as not fundamentally inferior to the celebrated complete topological field R.

In this section we will treat systems in one spatial dimension. The demonstration
system in Section 5 will be defined in terms of a tensor product of two such systems.
In order to express one-dimensionality in space, we use for the previously introduced
index set I the following arithmetical model of a discrete space with n elements

Zn := {0, . . . ,n−1} , n ∈ N , n > 0 (6)

equipped with the operation

⊕ : Zn×Z → Zn , i⊕ s := remainder of the division (i+ s)/n , (7)

of addition modulo n and the operation

ρ : Zn → Zn , i 7→ n−1− i (8)

of reflection. This is a special case of the general situation that there is a group (here an
extension of the the additive group Z by a reflection) which acts as a transformation
group on a carrier space (here Zn). Due to (n− 1)⊕ 1 = 0, the ⊕-operation describes
iteration over a periodically repeating or cyclic space. This is responsible for some of
the beneficial structural properties of the operators in the Hilbert space

Hn := H (Zn,C) . (9)

Instead of considering the elements of Hn as arbitrary functions on the finite space Zn

one may likewise consider them as periodic functions of period n on the infinite space Z.
Instead of letting the function values be complex numbers one could let them be pairs
of real numbers and hide the machinery of complex arithmetics behind a formalism

4see [1] for a discussion of subsystems in quantum mechanics
5 It is an interesting question, however, to what extend one may replace the finite set of computer num-

bers by a true finite field as advocated by many authors, e.g. [2], or even by a finite ring — which
would be sufficient for the direct midpoint integrator, as it needs no division.
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of real two by two matrices just as Dirac’s complex-valued gamma matrices hide the
machinery of quaternion arithmetics.

A natural self-adjoint operator is the discrete position operator X given by

(X ψ)i := i ψi for all ψ ∈Hn, i ∈ Zn , (10)

where multiplying the complex number ψi with i ∈ Zn
6 is well defined by understand-

ing Zn ⊂Z⊂R⊂C. More general, we associate with any function f : Z → C the linear
operator f (X) by

( f (X)ψ)i := f (i) ψi for all ψ ∈Hn, i ∈ Zn . (11)

All operators of this kind commute with each other: f1(X) f2(X) = f2(X) f1(X), and each
linear operator that commutes with X is of this kind. If f is real-valued, as in (10), this
operator is self-adjoint since f (X)∗ = f (X). The discrete position operator (10) is not the
only one that suggests itself. Actually, for each s ∈ Z the operator Xs defined as

(Xs ψ)i := (i⊕ s) ψi for all ψ ∈Hn, i ∈ Zn (12)

is a discrete position operator for a different choice of the origin. One easily finds a
function f for which Xs = f (X).

Now we consider induced operators which are in a sense complementary to the mul-
tiplication operators considered so far. For each s ∈ Z, we define the translation operator
Ts by

(Ts ψ)i := ψi⊕s for all ψ ∈Hn, i ∈ Zn . (13)

which gives rise to the following canonical properties (for all s, t ∈ Z)

Ts Tt = Ts+t , T ∗
s = T−s = T−1

s , T0 = 1 , Ts Xt = Xt+s Ts . (14)

The last equation of (14) is a version of the Heisenberg commutation relations which
fits the present framework. Further, we define the reflection operator R by

(Rψ)i := ψρ(i) for all ψ ∈Hn, i ∈ Zn . (15)

which satisfies for all s ∈ Z

Ts R = RT−s , R2 = 1 , R∗ = R = R−1 . (16)

Simple combinations of the translation operators define discrete derivation operators

∇+ := T1−T0 , ∇− := T0−T−1 , ∇ :=
1
2
(∇+ +∇−) , (17)

which satisfy

∇
∗
+ =−∇− , ∇

∗
− =−∇+ , ∇

∗ =−∇ , R∇ =−∇R , (18)

6unlike the imaginary unit, which is always written as i (i.e. not in italics)
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and that the discrete Laplacian

∆ := T1−2T0 +T−1 , (19)

which satisfies
∆ = ∇+∇− = ∇−∇+ , ∆

∗ = ∆ , R∆ = ∆R . (20)

The discrete Laplacian plays a distinguished role in the present framework since we
use negative multiples of it as Hamilton operator for free motion of particles. Under-
standing the eigenvalues of this operator will help in Section 5. Specializing the defini-
tion (1) we consider the function Q∆. For all ψ ∈H ,‖ψ‖= 1, we have

Q∆(ψ) = 〈ψ |∆ψ〉= 〈∇
∗
−ψ |∇+ψ〉=−〈∇+ψ |∇+ψ〉=−‖∇+ψ‖2 ≤ 0 , (21)

which implies that all eigenvalues of ∆ are less or equal zero. Obviously, each con-
stant state (i.e. ψi independent of i) is eigenvector for eigenvalue 0, so that we have
established that 0 is the largest eigenvalue of ∆. It is clear from the definition of ∆ that
minimizing Q∆(ψ) means for ψ to deviate from constancy as much as possible. An ob-
vious behavior of this kind is what sometimes is called a variation at spatial Nyquist
frequency. This gives rise to what one may call Nyquist state:

νi =
1√
n
(−1)i . (22)

It is easily seen to satisfy

(∇+ν)i =


−2νi if 0≤ i < n−1
−2νi if i = n−1 and n is even

0 if i = n−1 and n is odd
, (23)

which implies with (21)

〈ν |∆ν〉=−4 ·
{

1 if n is even
1− 1

n else
. (24)

We see, that for odd n the Nyquist state is not likely to minimize Q∆ exactly, since the
first and the last component being equal in this case, the state does not everywhere vary
at maximum frequency. The larger n, the less important is this admixture of a lower
frequency. If n is even, in generalization of what (23) says for this case, ν is eigenvector
for all relevant operators:

∇+ν =−2ν , ∇−ν = 2ν , ∆ν =−4ν . (25)

This makes the following very plausible: The eigenvalues of ∆ lie in the interval [−4,0],
where 0 is always an eigenvector and −4 only if n is even. If n is odd, the lowest eigen-
value is very close to −4. Numerical results completely agree with this. For instance,
for n = 200 the lowest five eigenvalues 7 are

−3.996053457 , −3.996053457 , −3.999013121 , −3.999013121 , −4.000000000
7computation of all 200 eigenvalues and eigenvectors took 8.422 s on an off-the-shelf 2.08 GHz desktop

computer with my code based on functions tred2 and tqli of [6]
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and for n = 201 these are

−3.993895830 , −3.997801783 , −3.997801783 , −3.999755714 , −3.999755714 .

In the following I describe the basic features of spectral decompositions of ∆ as seen
in numerous numerical examples. Eigenvalue 0 has always multiplicity 1, and the cor-
responding eigenvector is and constant and, hence, even. Even and odd states are, by
definition, eigenvectors of the two projectors

Peven =
1
2
(1+R) , Podd =

1
2
(1−R) , (26)

which, according to (20), commute with ∆. If n is even, the lowest eigenvalue is −4
and has multiplicity 1. The corresponding eigenvector is odd and is a multiple of the
Nyquist state. If n is odd, the lowest eigenvalue is slightly larger than −4 and has
multiplicity 2. The components of these eigenvectors change sign from i to i+1 just as
the Nyquist state but the absolute value of these components varies slowly with i. For
large n, the distance between adjacent eigenvalues shrinks strongly towards both ends
of the spectrum, so that the lowest eigenvalue has a very close neighbor. It makes thus
little difference whether the lowest eigenvalue has multiplicity 1 or 2. All eigenvalues
between the lowest and the highest have multiplicity 2 and can be selected as an odd
state and an even state. For the norm ‖∆‖ only the absolute values of the eigenvalues
matter, so as a conclusion of our discussion

‖∆‖= 4 for n even, and ‖∆‖≈ 4 for n odd. (27)

We observe in passing that none of these operators was defined as a matrix. The rep-
resentation of linear operators as matrices is not more natural in the finite-dimensional
situation than it is in the infinite-dimensional one. Treating Hn as a function space (with
discrete argument) is more natural in most situations. In the computational part of this
article we will never have to consider matrices, still less spectral decomposition of ma-
trices. This is important for practical applicability: A reasonable discretization of one
spatial direction asks for something like 100 discrete points. Therefore, 1-dimensional
quantum simulations would have to cope with complex 100 by 100 matrices. This is no
problem, since to compute eigenvalues and eigenvectors of such matrices is a matter
of seconds on modern off-the-shelf desktop computers (see footnote 7). However, do-
ing this for a 2-dimensional problem would involve 10000 by 10000 matrices which is
hardly feasible.

3 Defining the direct midpoint integrator

Actually we will consider the integrator defined in equation (86) of [4] for the simplify-
ing situation that the Hamiltonian does not depend on time.

Since the method comes from classical mechanics, we start with describing it for
the simplest pertinent situation — the initial value problem for a classical mass point
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moving in a force field. We write the equation of motion as

mẍ = F(x) (28)

and the initial values as x(0) and v(0), where v := ẋ. We want to compute the system
state x(h),v(h) after a time step of duration h. The Euler method does this as follows:

a := F(x(0))/m , x(h) := x(0)+hv(0)+
h2

2
a , v(h) := v(0)+ha . (29)

Here, the formula for x(h) can be given a more economic form, which assumes that v
was computed first

x(h) = x(0)+
h
2
(v(h)+ v(0)) . (30)

The well-known practical failure of this method seems to have convinced a majority of
scientists that the situation asks more for mathematical sophistication than for physics-
based intuition. For instance, implicit versions of the Euler method have been devised,
which gain a lot from the viewpoint of numerical mathematics but completely loose
the physical plausibility of the original 8 . The direct midpoint method [3], [4], [5] is as
simple and as plausible as the Euler method. It enjoys the worthy properties of being
reversible and symplectic. And it is second order, wheras the Euler method is only first
order. The definition is as follows:

x′ := x(0)+
h
2

v(0) , a := F(x′)/m , x(h) := x(0)+hv(0)+
h2

2
a , v(h) := v(0)+ha , (31)

where the formula for x(h) can also be written as

x(h) = x′+
h
2

v(h) . (32)

Here one natural idea has been added to the Euler procedure: Since we are going to
approximate the system path by a parabola, we should use a value for the constant
acceleration a which reasonably can replace the drifting acceleration values of the true
motion during the time span of duration h. Obviously, the midpoint in time, h

2 , would
be the most natural time point for the computation of a. Since we don’t know x(h

2) for
a definition a := F(x(h

2)), we use the directly available x(0) + h
2 v(0) instead. This is a

natural strategy to employ the available information. It does not resort to computing
the force twice in a time step (which was not an acceptable option in the granular mat-
ter application that drove me to develop the method) as do the various Runge-Kutta
schemes of second order and (among them) the popular Euler-Richardson algorithm.
Accurate treatment of velocity dependent forces F(x,v) (in a way that conserves the
total energy of charges moving in a static magnetic field) evaluates F(x′,v′) at velocity
v′ := v(0) + h

2 amem making use of the acceleration memorized from the previous time
step, and initialized as zero in the very first time step (see [5]).

8 building on Einstein’s famous dictum that God does not throw dies, I am tempted to conjecture that He
does not solve equations either
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To motivate the application to quantum mechanics, it may be instructive to follow
my own way, which was to use it first for classical continuum mechanics. Let us again
look for the simplest pertinent problem, which is the initial value problem for the wave
equation in one spatial dimension. Here we have for uniformly discretized space and
in suitable units the equation

ψ̈i = ψi−1−2ψi +ψi+1 , (33)

and the initial values ψi(0) and φi(0), where φi := ψ̇i. The definition

ψ
′
i := ψi(0)+

h
2

φi(0) , αi := ψ
′
i−1−2ψ

′
i +ψ

′
i+1 ,

φi(h) := φi(0)+hαi , ψi(h) := ψ
′
i +

h
2

φi(h)
(34)

turned out to simulate traveling waves without detectable tendency to change shape
or to increase the amplitude. What is different for the Schroedinger equation of a free
particle in the same discrete space? Also here, we get an equation for the second time
derivative of the wave function by applying the Hamilton operator twice. For a free
particle this results in the equation for bending waves in elastic substrates (a rod in one
dimension and a plate in two dimensions). The essential difference of the Schroedinger
wave compared to such a classical bending wave is in the role of the velocity. For the
Schroedinger wave this cannot be set arbitrarily as an initial condition but is prescribed
by the Schroedinger equation 9 as a function of the state ψ

ψ̇ =− iHψ . (35)

From a computational point of view this makes no difference. We are free to set the
initial velocity by (35) and then follow the evolution of states with a rule for computing
the second time derivative just as explained above for the wave equation.

Let us give this strategy a precise form: We define the skew-adjoint operator

D :=− i H . (36)

With the state ψ ∈H we associate a dynamical state (ψ , φ), where φ := Dψ for the initial
value of a time-discrete trajectory. The continuation of the trajectory is defined by the
general evolution step

t 7→ t +h , (ψ , φ) 7→ (ψ , φ) .10 (37)

According to the quantum mechanical direct midpoint integrator this step is defined as

ψ
′ := ψ+

h
2

φ

α := D2
ψ
′

φ := φ+hα

ψ := ψ
′+

h
2

φ .

(38)

9 we assume physical units to be chosen for which h̄ = 1
10 Building such a trajectory by computation is what is called simulation in this article.
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As in (31) there is a more explicit representation of the final state as

ψ = ψ+hφ+
h2

2
α (39)

which suggests an interpretation in which h is replaced by a parameter that varies from
0 to h and thus connects the states ψ and ψ by a parabolic curve (in Hilbert space) and
the quantities φ and φ by a linear curve. Then, everywhere along this connecting curve,
φ is the time derivative of ψ. If we consider this connecting parabola 11 as a Bézier curve
it determines a control point which easily can be recognized as the direct midpoint ψ′.
In this way, the inherently time-discrete method contains its own time-continuous rep-
resentation. This time continuous representation is by mere interpolation; if one needs
true detail about the history between ψ and ψ one has to reduce the time step in the
simulation. The parabolas of adjacent evolution steps fit together in a differentiable
manner, even if the time step h changes from one evolution step to the next. Therefore,
a sequence of evolution steps gives rise to a quadratic Bézier spline as a differentiable
representation of the discrete trajectory. Everywhere along this curve, the quantity φ

equals the time-derivative of ψ. This fully legitimates the name velocity for the quan-
tity φ. The spurious extra-information contained in the small difference between the
two velocity-like quantities φ and Dψ allows the time stepping algorithm to achieve
tasks (such as exact reversal of trajectories) that would be impossible without it. This
is a typical example of what computer scientists know as interplay of data structures and
algorithms.

One could try to avoid to apply the Hamiltonian twice and make use of the direct
midpoint state for updating the velocity instead of the acceleration. This leads to the
scheme

ψ
′ := ψ+

h
2

φ

φ := Dψ
′

ψ := ψ+hφ

(40)

which, however, is definitely inferior to the first method in all respects that I considered,
except of the obvious one that it is a bit simpler. So it will not be discussed further.
Added 2011-04-11
In 2008 I came to consider the following modification

ψ
′ := ψ+

h
2

φ

φ := 2 Dψ
′−φ

ψ := ψ+hφ

which turned out to have properties very similar to those of (38). I refer to it as the
asynchronous leapfrog integrator.

11 here we exclude the trivial case α = 0 for which this is actually a straight line
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4 Properties of the direct midpoint integrator

For this section, let H be any complex Hilbert space of finite dimension d (n will be
needed for a different purpose), D any skew-adjoint linear operator in H , and H := iD.
Although most comments will refer to the situation that H is the Hamilton operator 12

in a computational model of a quantum system, this interpretation adds nothing that is
required for the mathematics to work.

The form (38) of the evolution algorithm aims at minimizing the computational work
needed to produce a time-discrete trajectory. Structural properties of the evolution al-
gorithm can better be derived from a reformulation which we consider now: Replacing
the direct midpoint state ψ′ and the acceleration α by their definitions we find

ψ = ψ+hφ+
h2

2
D2

ψ+
h3

4
D2

φ ,

φ = φ+hD2
ψ+

h2

2
D2

φ .

It suggests itself to turn this into the definition of a linear operator Uh in the Hilbert
space H ⊕H of dynamical states. Of course, the latter is H ×H as a set and is endowed
with the scalar product

〈(ψ1 , φ1 ) |(ψ2 , φ2 )〉 := 〈ψ1 |ψ2 〉+ 〈φ1 |φ2 〉 .

and with the natural C-linear structure. Hence the definition of Uh is

Uh : H ⊕H → H ⊕H ,

Uh(ψ , φ) := (ψ+hφ+
h2

2
D2

ψ+
h3

4
D2

φ , φ+hD2
ψ+

h2

2
D2

φ) .
(41)

Notice that here — by the very nature of H ×H — no relation between ψ and φ is
assumed. Nevertheless it is instructive to see what this expression entails if the tentative
relation φ = Dψ holds. We have

Uh(ψ , Dψ) = (ψ+hDψ+
h2

2
D2

ψ+
h3

4
D3

ψ , D(ψ+hDψ+
h2

2
D2

ψ)) ,

which would correctly reproduce the first four terms in the power series of exp(hD) ψ

if we had h3

6 D3 ψ instead of h3

4 D3 ψ. What could appear as a missed opportunity to reach
optimum accuracy could at a deeper level be the reason for the stability and robustness
of the method.

Each linear operator A in H ⊕H determines a matrix
(

A11 A12
A21 A22

)
of linear operators

in H such that
A(ψ , φ) = (A11ψ+A12φ , A21ψ+A22φ) (42)

12 Considering the discrete derivation operator ∇ of (17) as D is also interesting. Here we gain the ca-
pability of shifting states by fractions of the discretization length in a way that for integer shifts we
approximate the translation operators of (13). Defining fractional shifts of discretely defined functions
is closely related to defining interpolation.
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and each such matrix of operators determines a linear operator in H ⊕H through this
formula.

If the space under consideration is clear from the context, it is allowed to write the
zero-operator as 0 and the unit-operator as 1. The operator determined by a matrix(

B 0
0 C

)
it is usually written as B⊕C. This notation allows us to write

Uh =

(
1− h2

2 H2 h(1− h2

4 H2)
−hH2 1− h2

2 H2

)
. (43)

Since all powers Hn of H are defined on our finite-dimensional H , all powers

Un
h := (Uh)n

are well defined too. We thus have a linear dynamical system, which depends on the
step duration h as a parameter.

Even for the physically trivial case that H is the zero-operator, Uh is not completely
trivial; it is simple enough that one can write down Un

h :

Un
h =

(
1 nh
0 1

)
. (44)

Applying this to a vector gives

Un
h

(
ψ

φ

)
=
(

ψ+nhφ

φ

)
, (45)

which corresponds to a motion with constant velocity φ. This reduces to trivial dynam-
ics if φ is set according to the Schroedinger equation as φ = − i H ψ = 0. Obviously, the
matrix in (44) is neither unitary nor normal (unless nh = 0) and this will hold for the
general case all the more. The simple example H = 0 shows that this is not a technical
deficiency but a rather natural situation for the dynamical scheme under consideration.

We start our investigation with the properties that do not need an explicit represen-
tation of Un

h in terms of a spectral decomposition of H.

4.1 Invariance under motion reversal

A short calculation involving several potentially surprising cancellations yields

UhU−h = 1 for all h ∈ R (46)

and, as a direct consequence,

Un
h Un

−h = 1 for all h ∈ R, n ∈ N . (47)
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This implies that each operator Un
h is invertible, with an inverse that can be given ex-

plicitly. The operators Un
h and Un

−h can be transformed into each other by the simple
unitary operator

T : H ⊕H → H ⊕H , T (ψ,φ) := (ψ,−φ) , (48)

which obviously satisfies

T 2 = 1 , T Un
h = Un

−h T for all h ∈ R, n ∈ N . (49)

This implies
T Un

h T Un
h = 1 for all h ∈ R, n ∈ N , (50)

so that one can reconstruct any (ψ,φ) from the result Un
h (ψ,φ) of a long simulation run

(i.e. large n) by applying T to this state and subjecting this transformed state again to
n steps of normal dynamical evolution (not one with negative h) and finally applying
operator T again. This is exact mathematically and deviations from it in computer
simulations are only due to numerical noise. It should be recognized that no anti-linear
operator is needed to achieve this reversal of motion in the present dynamical scheme.
This is, of course, due to the fact that we have available the velocity φ, the reversal of
which causes the desired effect just as the reversal of particle velocities achieves motion
reversal in classical mechanics.

4.2 Explicit representation

It certainly helps to understand the most simple case, which happens if H is one-
dimensional. Then it is no restriction of generality to interpret H as C, and H as a
real number. We then read the right-hand side of equation (43) as a real two by two
matrix to get a definition of Uh for this concrete case. One computes the n-th power of
this matrix by diagonalization:

Un
h =

(
Q −Q
1 1

)(
λn

1 0
0 λn

2

)
1
2

(
1/Q 1
−1/Q 1

)
, where

Q :=

√
h2H2−4

2H
and

λ1,2 := 1− h2H2

2
∓ hH

2

√
h2H2−4 .

(51)

Obviously λ1 λ2 = 1. For |hH| < 2 we get intermediary complex expressions for a real
final result, and also in the case |hH| > 2, where everything is real, one can transform
the terms such that the dependence on n becomes more transparent. A straightforward
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calculation gives

Un
h =

(
cos(nhB̂) Â

H sin(nhB̂)
−H

Â
sin(nhB̂) cos(nhB̂)

)
, λ1,2 = exp

(
∓ ihB̂

)
, where

Â :=

√
1− h2

4
H2 ,

B̂ :=
2
h

arctan
hH
2 Â

= H(1+
1

24
h2H2 +

3
640

h4H4)+O(h6)

(52)

in the first case, and

Un
h = (−1)n

(
cosh(nhB̃) Ã

H sinh(nhB̃)
H
Ã sinh(nhB̃) cosh(nhB̃)

)
, λ1,2 =−exp

(
±hB̃

)
, where

Ã :=

√
h2

4
H2−1 ,

B̃ :=
1
h

log(hHÃ+
h2H2

2
−1) ,

(53)

in the second case, and finally

Un
h = (−1)n

(
1 0

nhH2 1

)
, λ1,2 =−1 , (54)

for the degenerate case |hH| = 2. In the first case, there is a bound for ‖Un
h ‖ which is

independent of n, wheras in the second case ‖Un
h ‖ grows exponentially with n. It is

natural to refer to these three cases as stable, unstable, and indifferent.
Let us now return to the general case in which H is d-dimensional. To reduce this

case to (52), (53), (54) we choose a spectral decomposition (ei)d
i=1, (εi)d

i=1 of H where
the indexing is done such that i < j ⇒ |εi| ≤ |ε j|. For all i ∈ I := {1, . . . ,d} the projector
Pi := |ei 〉〈ei | commutes with H and the projector Pi := Pi⊕Pi commutes with Uh, and,
hence, with Un

h . Therefore, the 2-dimensional subspace Hi := Pi(H ⊕H ) is invariant
under Uh. The restriction of Un

h to Hi, when written as a complex two by two matrix, is
given by (51) with H replaced by εi. The h-dependent partition I = Îh∪ Ĩh∪ Īh with

Îh := {i ∈ I : |εi h|< 2} , Ĩh := {i ∈ I : |εi h|> 2} , Īh := {i ∈ I : |εi h|= 2} , (55)

decides whether for i ∈ I this complex two by two matrix equals the matrix in (52), or
(53), or (54), again with H replaced by εi. The projectors

P̂h := ∑
i∈Îh

Pi , P̃h := ∑
i∈Ĩh

Pi , P̄h := ∑
i∈Īh

Pi , (56)

unveil their origin by satisfying the inequalities

‖hH P̂hψ‖< 2 ‖ P̂hψ‖ , ‖hH P̃hψ‖> 2 ‖ P̃hψ‖ , ‖hH P̄hψ‖= 2 ‖ P̄hψ‖ (57)
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for all ψ ∈H . The augmented projectors

P̂h := P̂h⊕ P̂h , P̃h := P̃h⊕ P̃h , P̄h := P̄h⊕ P̄h , (58)

allow us to decompose the space H ⊕H into subspaces on which Un
h is uniform with

respect to the property of being stable, unstable, or indifferent. Of course, the projectors
in (58) commute with Un

h and with each other, and add up to the unit-operator. There-
fore, the restriction of Un

h to the invariant subspace P̂h(H ⊕H ) is the expression for Un
h

as given in (52) with H interpreted again as an operator in H instead of a real number.
Corresponding statements hold for the invariant subspaces P̃h(H ⊕H ) and P̄h(H ⊕H ).
We thus have the following explicit representation of Un

h :

Un
h = Ûn

h P̂h +Ũn
h P̃h +Ūn

h P̄h , (59)

where Ûn
h is the expression as given in (52) for Un

h with H interpreted an operator in
H . In the same manner Ũn

h is understood to originate from (53), and Ūn
h from (54).

All functions of H appearing in these expressions are primarily defined via spectral
decomposition of H, just as they originated here. They may be defined also by inserting
operators into the power series expansions of the corresponding numerical functions.

According to our ordering of the eigenvalues the set Îh grows monotone to I as |h|
tends to zero, and Ĩh∪ Īh shrinks monotone to the void set. Whenever

|h|< 2
‖H ‖

(60)

or ‖H ‖= 0 we have Îh = I and thus P̂h = 1. Then only the first term in (59) is present.
We are now interested in the behavior of Un

h for small h, especially in limn→∞Un
t/n and

thus rightfully assume (60). Expansions in powers of h of the quantities Â and B̂ unveils
the behavior of of Un

h near the limit. B̂ gives rise to the expansion

B̂ = H (1+
1
24

h2H2 +
3

640
h4H4 +

5
7168

h6H6 +
35

294912
h8H8 + . . . ) =: Ĥ(h) , (61)

and quantities Â and 1
Â

expand as follows:

Â1(h) = 1− 1
8

h2H2− 1
128

h4H4− . . . ,

Â2(h) = 1+
1
8

h2H2 +
3

128
h4H4 + . . . .

(62)

Equation (59) then implies

Un
h =

(
cos(nhĤ(h)) 1

H Â1(h) sin(nhĤ(h))
−HÂ2(h) sin(nhĤ(h)) cos(nhĤ(h))

)
. (63)

Since Ĥ(0) = H, Â1(0) = Â2(0) = 1, we have

lim
n→∞

Un
t/n =

(
cos tH 1

H sin tH
−H sin tH cos tH

)
=: U∞

t , (64)
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and after some calculation

lim
n→∞

(
Un

t/n−U∞
t

)
n2 =− t3 H3

24

(
sin tH 1

H (3 sin tH
tH − cos tH)

H(3 sin tH
tH + cos tH) sin tH

)
. (65)

Applying operator (63) to an initial dynamical state and re-building the exponential
function from the trigonometric functions gives

Un
h

(
ψ

− iHψ

)
=
(

exp
(
− inhĤ(h)

)
ψ+ i Â3(h)sin(nhĤ(h))ψ

− iH
(
exp

(
− inhĤ(h)

)
− i Â4(h)sin(nhĤ(h)

)
ψ

)
, (66)

where

Â3(h) =
1
8

h2H2 +
1

128
h4H4 + . . . ,

Â4(h) =
1
8

h2H2 +
3

128
h4H4 + . . .

(67)

are the expansions of 1− Â and 1−Â
Â

. Therefore, or directly from (64),

lim
n→∞

Un
t/n

(
ψ

− iHψ

)
=
(

exp(− i tH)ψ

− iHexp(− i tH)ψ

)
. (68)

To understand the effect of replacing the exact dynamics (68) by (66), we assume
that ψ is an eigenvector of H with eigenvalue ε. Further, we consider only the state
component and not the velocity. The main effect is that the dynamical phase factor
exp(− i tε) gets replaced by exp

(
− i tε(1+ 1

24 h2ε2)
)

and that the term − i 1
8 h2ε2 sin(tε(1 +

1
24 h2ε2))ψ gets added to the state. Notice that the whole analysis assumes h2ε2 < 4.
Here we see that this is not sufficient to make these modifications small enough for
neglecting them in all but the crudest studies. However, if one reduces h to a tenth of
the value which just satisfies the previous condition, the amplitude-changing additive
term may be ignorable in most applications. The frequency shift is still large enough
that the simulated wave runs out of phase by a full period after 600 oscillations.

In a sense, the Hamiltonian H acts as a renormalized Hamiltonian H(1 + 1
24 h2H2).

Replacing the original Hamiltonian by H(1− 1
24 h2H2) would let the new renormalized

Hamiltonian come close to the original H. In a realistic time-discrete model of a quan-
tum system, space is discretized too and the Hamiltonian (and its eigenvalues) depends
on the spatial discretization length. A meaningful assessment of the accuracy with
which a discretized system is able to represent a continuous one, needs to take the in-
terplay of both discretizations into account.

4.3 Conservation of energy and semi-conservation of the norm of the
initial state

Let us consider the sequence of states resulting from a simulation which starts with
state ψ ∈H . As pointed out earlier, we put φ :=− iHψ to arrive at the initial dynamical
state (ψ , φ). The computation of the trajectory proceeds by iteration:

(ψ
1
h , φ

1
h ) := Uh(ψ , φ) , (ψ

n+1
h , φ

n+1
h ) := Uh(ψ

n
h , φ

n
h ) . (69)
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Of course,
(ψ

n
h , φ

n
h ) = Un

h (ψ , φ) . (70)

It is clear, however, that using Un
h is not a method for computing a trajectory. If we

had a spectral decomposition of H, which underlies the explicit representation of Un
h ,

we would compute the exact expression exp(− i tH)ψ directly. However, as we will
see, the representation (70) together with (59) is able to explain general properties of
trajectories which would not easily be derived from the definition by iteration.

For the exact version ( e− inhHψ ,− iH e− inhHψ) of (ψn
h , φn

h ) (see (68)) one would have
exact unitarity and exact energy conservation so that the difference quantities

ν(ψ,n,h) := 〈ψ
n
h |ψn

h 〉−〈ψ |ψ〉 , ε(ψ,n,h) := 〈ψ
n
h |φn

h 〉−〈ψ |φ〉 (71)

relative to the initial state would vanish for all n ∈N. Therefore, these quantities are ex-
pected to remain small in regular simulations. For having a natural notion of smallness
we define the relative quantities

νrel(ψ,n,h) :=
ν(ψ,n,h)
〈ψ |ψ〉

, εrel(ψ,n,h) :=
ε(ψ,n,h)
|〈ψ |φ〉|

. (72)

For the demonstration system of Section 5 these quantities are shown in Figure 7 as
functions of model time t = nh for the fixed value h of the simulation. Since computing
these quantities does not add significantly to the computational burden of a simulation,
I created corresponding diagrams throughout my development work on quantum sim-
ulation. Although the systems varied considerably, all these diagrams showed striking
similarities. Actually, it was this observation that let me expect that an explicit analy-
sis of the direct midpoint method for arbitrary Hamiltonians would be feasible. Now,
that the representation (59) is established, it is straightforward to deduce these general
properties. It might be instructive to state them as observations first, and come to the
explanation later on:

(i) νrel(ψ,n,h) starts with 0 and drops soon to small negative values and never becomes
positive

(ii) ℑεrel(ψ,n,h) is 0 up to numerical noise

(iii) The curve ℜεrel looks like being proportional to the derivative of the curve νrel

The shape of these curves with their partly flat, partly wavy, course is not easy to un-
derstand at a first glance. The first observation is that the curve shape does not change
significantly when the step size h gets changed, as far as the range of the variable nh
remains the same. Using auto-scaled graphical representation of νrel and εrel (or even
ν and ε) makes this evident. It turns out that doubling the numbers of steps used to
cover a span of model time reduces νrel and εrel to a quarter of their original values.
This suggests to consider the quantities

νscaled(ψ,n,h) :=
ν(ψ,n,h)

h2 , εscaled(ψ,n,h) :=
ε(ψ,n,h)

h2 (73)

for which the observation is
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(iv) νscaled(ψ,n,h) and εscaled(ψ,n,h) depend on n and h predominantly through their
product t = nh

In the case of Figures 8, 9 the curves from three runs with h-values related as 1 : 2 : 4
collapse perfectly (within the graphical resolution) to a single curve in agreement with
the previous formulation. Not for all run data, the match is as perfect as in the present
case. The limiting curve shape, thus is seen to depend only on the initial state, the time
interval, and the Hamiltonian, just as the exact time continuous trajectory.

Let us now look for explanations. The representation (59) gives explicit expressions
for the quantities in equation (71). To derive these, we decompose ψ by means of pro-
jectors (56):

ψ = P̂h ψ+ P̃h ψ+ P̄h ψ =: ψ̂+ ψ̃+ ψ̄ . (74)

Since the projectors (56) project on mutually orthogonal subspaces, we have

ν(ψ,n,h) = ν(ψ̂,n,h)+ν(ψ̃,n,h)+ν(ψ̄,n,h) (75)

and
ε(ψ,n,h) = ε(ψ̂,n,h)+ ε(ψ̃,n,h)+ ε(ψ̄,n,h) . (76)

From (52) we have

ν(ψ̂,n,h) =−h2

4
‖H sin(nhB̂) ψ̂‖2 ,

ε(ψ̂,n,h) =−h2

8
〈 ψ̂ | H3

Â
sin(2nhB̂) ψ̂〉 ,

(77)

and from (53)

ν(ψ̃,n,h) =
h2

4
‖H sinh(nhB̃) ψ̃‖2 ,

ε(ψ̃,n,h) =
h2

8
〈 ψ̃ | H3

Ã
sinh(2nhB̃) ψ̃〉 ,

(78)

and, finally, from (54)

ν(ψ̄,n,h) = 0 ,

ε(ψ̄,n,h) = 4
n
h
〈 ψ̄ | ψ̄〉 .

(79)

Ad (i): Consider the first equation in (78): It says that 〈ψn
h |ψn

h 〉 grows exponentially
with n if P̃hψ does not vanish. This is very likely to be seen in any simulation run in
which the step duration h was chosen at random. The present theory assures: Reduc-
tion of |h| will finally achieve P̂hψ = ψ and thus P̃hψ = 0 (and P̄hψ = 0, deviations from
which could happen only intentionally). Then the equations (77) are active with ψ̂ = ψ.
This then implies that ν(ψ,n,h) will never become positive, i.e. the norm of the evolv-
ing state will never exceed the norm of the initial state. Even states with extreme spikes
and jumps are no exception to this rule. However, exponential growth will let even
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tiny components P̃hψ become dominant and explode . The only reliable way to prevent
such components from being present in the initial state of a computational model, is to
set h such that the state-independent criterion (60) is satisfied. To understand why this
is the case, we think of the initial wave function as a sum of a ‘mathematical’ function
(obtained by understanding all functions and operations in the sense of mathematics)
and a function representing the numerical noise (quantization noise) from the encoding
of numbers in terms of a finite number of bits. Due to the linearity of Uh we can con-
sider the fate of these contributions to the initial wave function separately. Whereas the
the ‘mathematical’ wave function typically defines an distribution of H-values around
〈ψ |H ψ〉 with an upper bound of the same order of magnitude, the H-values of the
noise wave function will cover the whole possible range, up to the limit ‖H ‖.

In the model of Section 5 the value of ‖H‖ is determined mainly by the kinetic energy
for which the operator norm is known from (27). For making sure that also contribu-
tions from the interaction potential are properly taken into account, I devised a semi-
empirical algorithm for finding a good estimate for ‖H ‖ directly from H and ψ: The
iteration scheme

ψ0 := ψ , χ := H ψi , ηi :=‖χ‖ , ψi+1 :=
1
ηi

χ (80)

yields a sequence (η1,η2, . . .) of positive numbers and a sequence (ψ1,ψ2, . . .) of states
with the following properties: The first few values of ηi correspond to the distribution
of energy values determined by the ‘mathematical’ wave function. The η-sequence then
grows soon to much higher values near ‖H ‖. Visualizing the corresponding states ψi is
interesting: as η grows, the states show over increasing areas a uniform checkerboard
pattern, which in two dimensions corresponds to the Nyquist state (22). I found it
always sufficient to compute at most 100 iterations. This is then no noticeable addition
to the computational work of a simulation with typically does thousands of steps. For
steps set small enough to prevent numerical noise to grow, the intentional features of
the system such as trajectories of centers of wave packets get typically represented with
very good accuracy, so that a comparison of one run with a control run with step h/2
will essentially indistinguishable results. The same would hold true in most cases for
doubling the step if one could execute the algorithm according to exact mathematics.
But with computer mathematics one will get explosion, unless h was set overcautious.

Ad (ii): The formulas for ε say that it is real in all cases. Thus 〈ψn
h |φn

h 〉 differs
from 〈ψ |φ〉 = − i〈ψ |H ψ〉 by a real quantity. Therefore, ℑ〈ψn

h |φn
h 〉 = −〈ψ |H ψ〉 and

ℜ〈ψn
h |φn

h 〉 = ε(ψ,n,h) for all n. This can be interpreted as exact conservation of energy.
It is to be noted, however, that 〈ψn

h |φn
h 〉 equals − i〈ψn

h |Hψn
h 〉 only approximately, so

that it is not really the expectation value of the Hamilton operator which is conserved
exactly.

Ad (iii): Since the function ν is related to the change of the norm of a state and the
function ε is related to an imaginary contribution to the expectation value of the Hamil-
tonian, one expects that these functions are related. Actually, (52) and (53) imply

nh ε(ψ,n,h) =
(

h
2

d
dh
−1
)

ν(ψ,n,h) (81)
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for all h such that P̄hψ = 0. I had guessed this equation before, by extrapolating power
series results got for Un

h for n = 1,2, . . . ,15 by means of a computer algebra system. Even
with (52) and (53) given, verifying the equation is easier than finding it. The observa-
tion (iv) pointed more to a relation between limits rather than to an exact equation
between the functions ν and ε. Since this relation involves a derivative with respect
to h, it connects data from different simulations (differing in h to allow computing the
derivative). This lets the equation appear quite cryptic. Two functions which are related
approximately by a derivation within a single simulation will appear in (82).

Ad (iv): Making use of (61) one finds

νscaled(ψ̂,n,h) =−1
4
‖H sin(nhĤ(h)) ψ̂‖2 h→0−→−1

4
‖H sin(nhH) ψ̂‖2=: ν̃(ψ̂,nh) ,

εscaled(ψ̂,n,h) =−1
8
〈 ψ̂ |H3 sin(2nhĤ(h)) ψ̂〉 h→0−→−1

8
〈 ψ̂ |H3 sin(2nhH) ψ̂〉=: ε̃(ψ̂,nh) .

(82)

As a result of this, simulation runs of a system for different values of the time step give
nearly identical curves for the quantities νscaled and εscaled if represented as functions
of time t = nh and not simply as as a function of the step number. For the scaling
limits ν̃ and ε̃ one verifies directly d

dt ν̃(ψ, t) = 2ε̃(ψ, t) which can also be derived from
the equation (81) for the unscaled quantities.

The features of the functions ν̃, ε̃ can be understood based on their definition in (82).
Employing the same spectral decomposition (ei)d

i=1, (εi)d
i=1 of H which was used for the

definition of the projector P̂h, we write for ψ = ∑
d
i=1 ci ei

ν̃(ψ, t) =−1
4

d

∑
i=1
|ci|2εi

2 sin2(tεi) =−1
8

d

∑
i=1
|ci|2εi

2(1− cos(2tεi))

=−1
8
‖Hψ‖2 +

1
8

d

∑
i=1
|ci|2εi

2 cos(2tεi) .

(83)

This makes clear, that the curve oscillates around the value −1
8 ‖Hψ ‖2 and attains a

first minimum for 2tεmax ≈ π, where εmax is the largest energy value εi for which |ci| is
significantly larger than 0. In most applications this is much smaller than εd . Numbers
will be discussed in the comments on Figures 8.

5 Simulating the crossway system

Two-dimensional motion of a particle under the influence of potentials has been nicely
simulated and visualized in [8]. This is very instructive as an orientation, but it does
not unveil the deeper characteristics of quantum dynamics. These can become appar-
ent only in the interaction between quantum systems. Essential for fast computational
implementation and visualization of quantum interaction is finding a simple and de-
pictive model of a quantum system involving interaction of subsystems. Here, we will
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6

-

u (0,y j) : position of particle 2

u (xi,0) : position of particle 1

s
(xi,y j) : position of the pixel which shows ψi j

s
origin

Figure 1: Crossway situation

be concerned with systems in which it is motion in space (’real’ space, not e. g. a space
of spin configurations) which is under the control of interaction.

An obvious choice is a model with two particles, each living in a one-dimensional
discrete space as considered in Section 2. If this space is the same for the two particles,
one has a peculiar situation: for one particle to move along its space it might have to
cross the path of the second particle. If the interaction is strong for short distances, this
will cause violent motion which is not common in realistic systems in which particles
can move around each other and nevertheless avoid coming under the influence of
the strong forces near their centers. Taking this into account, it is a natural idea to
arrange the linear biotops of the two particles perpendicular to each other, resembling
two crossing roads. Now strong interaction between the particles can be avoided if they
don’t insist in passing the crossing simultaneously.

We now consider a concrete system. For particle 1 we provide a linear chain of n1
discrete positions, which we take as the centers xi of the sub-intervals which result



23

from an interval [−L1
2 , L1

2 ] by subdividing it into n1 congruent parts:

xi =−L1

2
+
(

i+
1
2

)
d1 , i ∈ {0, . . . ,n1−1} where d1 :=

L1

n1
. (84)

For particle 2 we imply the same definitions with index 1 replaced by index 2 and with
xi replaced by yi. Both chains get embedded in an Euclidean plane. Those of particle 1
on the x-axis and those of particle 2 on the y-axis of a Euclidean system of coordinates
which we have selected in this plane. The state space of the system consisting of parti-
cle 1 and particle 2 is of the form Hn1 ⊗Hn2 . It consists of the complex-valued functions
on Zn1 ×Zn2 and is equipped with the scalar product

〈ψ |ϕ〉 :=
n1−1

∑
i=0

n2−1

∑
j=0

ψi j ϕi j . (85)

As indicated already, we interpret ψi j as the quantum mechanical amplitude associated
with the situation that particle 1 is at position xi of ‘street 1’ and particle 2 is at position
y j of ‘street 2’ and thus have the distance

ri j :=
√

x2
i + y2

j (86)

from each other 13. ( One could associate this amplitude also with the situation that a
single particle is at a ‘off-road’ position (xi,y j) of the plane and thus has the distance ri j

from the origin. Actually, the whole system to be described could be interpreted in this
way as a rather artificial 2-dimensional system of a single particle in a potential.) The
kinetic part H0 of the Hamiltonian is of the form a1∆⊗ 1 + a21⊗∆ where the constants
a1,a2 are expressed in terms of particle masses, lattice spacing, and physical constants
as in the following explicit expression

(H0 ψ)i j :=
−h̄2

2m1d2
1
(ψi−1, j−2ψi j +ψi+1, j)

+
−h̄2

2m2d2
2
(ψi, j−1−2ψi j +ψi, j+1) ,

(87)

where i±1 is to be understood modulo n1, and j±1 modulo n2. The complete Hamil-
tonian is H := H0 +V , where

(V ψ)i j := ( f1(xi)+ f12(ri j)+ f2(y j)) ψi j , (88)

and f1, f12, f2 are suitable functions R → R for describing interaction with the environ-
ment and between the particles. For the system under consideration these functions are
as follows:

f1(x) := 0 , f12(r) := α
exp(−µr)
(r + ε)1+p , f2(y) := βy2 . (89)

13 If we replace the distance by ri j := |xi − y j|, we have the case that the two roads coincide rather than
cross each other.
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For the sake of simplicity this article reports and discusses basically a single compu-
tation concerning this system. Of course, in this computation each general parameter
has a numerical value, and this value will be notified for each such parameter in the
following. With this agreement on the parameters, the dynamical system is determined
by a the following twelve numbers:

• positive integers: n1(= 150),n2(= 64)

• positive reals: h̄(= 1),L1(= 7.5),L2(= 1),m1(= 7.5),m2(= 8),ε(= 0.2),β(= 308.83)

• arbitrary reals: α(=−2.2598),µ(= 1), p(= 1)

The classical limit of the system is an interesting two-dimensional dynamical system
which resembles the double spring systems presented in [7]. This offers a good op-
portunity to compare sets of classical trajectories with the evolution of quantum states.
This will, however, not be carried out here.

After having specified the state space and the Hamilton operator, we need to spec-
ify the initial state. We choose it as a tensor product state (thus not an entangled
one) of a Gaussian wave packet for particle 1 and an eigenstate of the harmonic os-
cillator Hamiltonian H2 to which the Hamiltonian (87), (88) reduces for α = 0 after re-
interpretation as an operator in Hn2 . Let us denote the eigenstates and eigenvalues of
H2 as φk, εk , k ∈ {0,1,2, . . .}, where the εk increase with k.

The Gaussian state ψ1 ∈Hn1 gets a preliminary definition as

ψ
1
i := exp

(
−1

2

(
xi− xc

σ

)2
)

, (90)

where in our case xc = −1.5 and σ = 0.1875. This is made a normalized state by multi-
plication with a suitable real constant. This Gaussian bell is sufficiently separated from
the boundaries of the biotope (which are at x =±L1/2,L1 = 7.5) that no precautions are
needed for making it periodic. (Since the discrete positions 0 and n1−1 are neighbors,
a large difference between ψ0 and ψn1−1 has the same dynamical effect as if this this dif-
ference would appear somewhere in the interior of the biotope. Such differences can be
strongly reduced by replacing the right-hand side term of (90) by a sum of three copies
of this term with xc replaced by xc−L1,xc,xc + L1 respectively.) This reminds us of the
fact that Gaussian wave functions are not canonical in the present context. It could
be instructive to imitate in discrete space the analysis which singles out the Gaussian
wave functions for quantum mechanics in R. Due to the good behavior of the naively
discretized Gaussians, there seems to be no real need for such an analysis. The wave
packet is at rest so far. It gets a velocity v towards the origin (the road crossing) by
application of the boost operator N1(v) defined as

(N1(v)ψ)i := exp( i vxi m1/h̄) ψi . (91)

In our case incidentally v = 3.14159. This finishes the definition of the initial state ψ1 of
particle 1.
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For particle 2 we choose the ground state φ0 of H2. We then have the standard situ-
ation of scattering theory: A quantum system in a stable state, the target, gets hit by a
projectile, and, as a consequence of this, will evolve into a superposition of stationary
states, and also the motion of the projectile will be modified by exchanging energy (and
momentum) with the target. Our crossway system will allow to follow this process
at the conceptual level of time dependent scattering theory (e.g. [9]), where scattering
states are understood as dynamical idealizations of true system trajectories. Actually,
the coupling constant β is adjusted such that the kinetic energy of particle 1 (the pro-
jectile) equals the energy difference ε4 − ε0. Eigenvectors and eigenvalues of H2 are
here obtained by the tools mentioned in footnote 7. If one would simply discretize the
continuous harmonic oscillator wave functions one would get annoying inaccuracies
for low values of n2 and higher excited states. Notice that the practical convenience of
spectral analysis in defining instructive initial conditions does not mean that we need
spectral analysis for the definition of the dynamics of our system. Now we define from
the state ψ1 ∈ Hn1 of particle 1 and the state ψ2 ∈ Hn2 of particle 2 (recall ψ2 = φ0) the
state ψ := ψ1⊗ψ2 of the two-particle system by

(ψ1⊗ψ
2)i j := ψ

1
i ψ

2
j , (92)

This state is visualized in Figure 2. The coding of complex numbers as colors is natural:
The absolute value controls luminance and the polar angle controls hue. The polar
angle is 0 for red, 120 degrees for green, and 240 degrees for blue. Actually |ψi j|γ is used
to control the luminance with γ set from the control file. Normal values are γ = 0.5 or
γ = 1. But for inspecting also the areas where the values of the wave function are small
and where violations of (60) become visible as expanding checkerboard patterns, much
lower values such as γ = 0.01 are helpful.

The figure shows the whole biotope of the system where the aspect ratio is not con-
served and the pixel structure is hidden by interpolation. Recall Figure 1 for the cor-
respondence between graphical position and the positions of the particles in their re-
spective biotops. Since the ground state of the harmonic oscillator is a Gaussian bell
too, the initial state is a Gaussian in two dimensions. The colored stripe pattern results
from the application of the boost operator. It indicates the velocity of the wave packet,
which lets it move towards the center of the frame.

It could be instructive to try a different mode of visualization: Instead of an rectan-
gular image, present a time sequence of graphical events each being of the type: show
particle 1 at xi and particle 2 at y j both in the same color, namely the one corresponding
to the complex number ψi j. In this form, the method extends naturally to n-particle
wave functions in a plane or — making proper use of perspective — even in space. It is
not clear however, whether the details can be arranged in a way that the human visual
system can convert this graphical process into a useful impression.

5.1 Requirements on the number of discretization points

So far we have set up the concrete version of our system as a computational system in
terms of numbers. In order to relate it to an idealized physical system, we have to inter-
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pret the numbers as representing physical quantities. The quantities in our system all
have dimensions which are clear from the context. Since only mechanical dimensions
appear, all physical quantities are defined if a unit L of length, a unit T of time, and
a unit M of mass are defined. Setting the numerical value of h̄ in the (L,T,M)-system
equal to 1 (as we do throughout) means to use units that are related by

M =
h̄T
L2 . (93)

Let us consider particle 1 first. The length L1 = 7.5L of the biotope and the number n1 =
150 of discretization points determines a discretization length d1 = (7.5/150)L. Together
with the mass m1 of particle 1, this determines a maximal kinetic energy

Emax :=
h̄2

2m1d2
1
‖∆‖= 2h̄2

m1d2
1

(94)

(see (27)). Writing this as
1
2

m1v2
max

yields

vmax =
2h̄

m1d1
. (95)

In our example this computes to 150
7.5·7.5 2 = 8.38 which is indeed larger than the velocity

v = π to which we have boosted our Gaussian wave packet. Stated more generally:
If a particle of mass m is to move with velocity v within a linear discrete biotope of
geometrical length L, then we need at least

n =
mvL
2h̄

(96)

discretization points in this biotope. Notice that this represents n as a quotient of two
angular momenta. This simple rule is the essential tool for adjusting the discretization
to a given physical situation. The computational system can correspond to a physical
system only if v is small compared to the velocity of light. Let us thus assume v/c = 0.01
from which we obtain the following relation between L and T:

T =
100πL

c
. (97)

Consider for instance L = 1nm. Then T = 1.048fs, and M = 1.105 · 10−31kg. Therefore,
d1 = 50pm and m1 = 8.288 · 10−31kg = 0.1213me. The Compton wavelength h̄/(m1 c) of
particle 1 is by the factor 0.0085 smaller than the discretization length d1. This shows
that concentration of the wave function to a single point is far from the degree of con-
centration which in a real system would lead to noticeable modification of the dynam-
ics by field theoretic effects. However, there are peculiar effects with such strongly
concentrated wave functions: The dynamics governed by the discrete Laplacian lets a
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Figure 2: Initial state of the crossway system, t = 0

very sharp Gaussian spread into two peaks (in one dimension) contrary to the normal
spreading of Gaussian wave packets in which a single peak becomes wider and lower.

For particle 2, we only consider the transition between the ground-state and nearby
excited states. Contrary to what we did for particle 1, we don’t take over the shape of
wave functions from continuum quantum mechanics. The number n2 has to be large
enough to let the eigenstates under consideration be sufficiently smooth and filling their
biotope to a considerable fraction and nevertheless be practically zero at the rim of it.
Varying this parameter under graphical feedback is a quite efficient method to achieve
this. That here the value of n2 is chosen as a power of 2 has no significance in the present
context. It was useful in comparing eigenvalues and eigenvectors with those obtained
from a treatment based on the Fast Fourier Transform.

5.2 Results from a typical simulation run

Most of the data to be shown here were created in a single program run of 2000 evolu-
tion steps which took 58.3 seconds. The time step h = 0.00106798566 was selected by the
program by means of algorithm (80) aiming at satisfying criterion (60). For illustration
of the scaling behavior (82) two further runs were needed with h is reduced to h/2 and
h/4 respectively and, correspondingly, with 4000 and 8000 evolution steps.

Figures 2, 3, 4, and 5 should give an impression of the evolution of the 2-particle wave
function during the main run. As mentioned already, Figure 2 is the initial state with
particle 1 moving towards the center of the frame and particle 2 being in the oscillator
ground state. At the center, interaction of the particles influences the wave function as
shown in Figures 3 and 4. Figure 5 shows the wave function at the end of the present
simulation run. Now there is a large amplitude for the situation that particle 1 has
traversed its cyclic biotope and thus is seen at the left-hand side of the frame. Here,
at the left-hand side of the frame, the wave function looks very much as in Figure 2,
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Figure 3: Interacting state of the crossway system, t = 0.833

Figure 4: Scattering state of the crossway system, t = 1.474

which says that particle 2 is still in the ground state. In a situations in which particle 2
is excited (visible as nodes of the wave function), particle 1 did travel less far. This is to
be expected, since the energy for excitation has been taken from the kinetic energy of
particle 1.

In the interaction zone, the wave function shows a rich structure. In some x-regions,
the corresponding amplitude distribution in y-direction shows two nodes, in other x-
regions we see four nodes. This indicates the predominance of the second and fourth
excited state for particle 2 in situations characterized by particle 1 occupying the respec-
tive x-regions. It is certainly desirable to condense this complex information to a level
that is more amenable to human comprehension. After much experimentation I devised
a simple method which turned out to be very efficient in extracting interpretable fea-
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Figure 5: Final state of the crossway system simulation, t = 2.115

tures. The basic idea is to imitate destruction operators (which in the narrow technical
sense don’t apply since we don’t have identical particles or a Flock space) to transform
the two-particle state into a one-particle state. Precisely, we associate with any φ ∈ Hn2

the operator a(φ) : Hn1 ⊗Hn2 →Hn1 as

(a(φ)ψ)i :=
n2−1

∑
j=0

ψi j φ j . (98)

As the states to be destructed, there is here no other natural choice than choosing the
energy-eigenstates φn , n ∈ {0,1,2,3,4}, which can be reached energetically by slowing
down particle 1. For ψ we take, of course, the state of the crossway system as it evolves
during the simulation. Then also the one-particle states a(φn)ψ evolve and can be vi-
sualized. Especially convenient is to use the 2-particle visualization capability with ψ

replaced by the untangled auxiliary state (a(φn)ψ)⊗ φn. Here, it may suffice to show
how the norm of these states

an(ψ) :=‖a(φn)ψ‖ , (99)

evolves during the simulation. These quantities will be referred to by the ad-hoc name
excitation amplitudes and are represented in Figure 6 over the whole run. As the word
amplitude suggests, the square of this quantities is a probability, namely the probability
for finding the energy of particle 2 equal to the energy εn of state φn. The standard
method to arrive at this probability is to define the projector Pn = 1⊗|φn 〉〈φn | and the
expectation value 〈ψ |Pn ψ〉. Following this method one thus never encounters a wave
function of particle 1 which is associated with the wave functions ψ and φn.

The curves clearly indicate the excitation of particle 2 from the ground state φ0 to state
φ2, and, with lower intensity, to the just reachable state φ4. Excitation to states φ1 and
φ3 is forbidden by parity conservation. Actually, there is an extremely weak excitation,
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Figure 6: Excitation amplitudes

as the magnification factor shows, which is needed to make the corresponding curves
visible in the diagram. As their smooth character indicates, these curves are not mere
numerical noise. If one continues the simulation run, one finds a second shift of the
excitation levels as particle 1 ‘passes the crossing again’, due to the torus topology of its
biotope.

The Figure 7 is fully explained with equation (71) and the discussion in Section 4.3.
The same is essentially true for Figures 8 and 9. For Figure 8 we can discuss the conse-
quences of (83). The program computes ‖H ‖= 1190 and ‖Hψ‖= 38.5885 for the initial
state ψ, where, of course, ‖ψ‖= 1. From the original data of the figure (for each of the
three curves) one reads for all t ∈ [0.31,1.1] the constant value ν̃(ψ, t) = −186.134 with-
out exception. This is the constant level that according (83) should equal −1

8 ‖Hψ ‖2.
This turns out to hold perfectly. The first minimum in ν̃ can be seen from the original
data for tmin = 0.0360445 which says εmax ≈ π

tmin
= 43.67 which has to be larger than ‖Hψ‖

which is the case. The time tmin is the time for a half-wave of wave t 7→ cos2emaxt.
In the total time span 2.1358 we have 29.63 full waves of this frequency. This wave can
be seen most clearly in the second burst shown in the figure. The dynamically relevant
wave t 7→ exp( iemax) t has only half this frequency so that we have 14.81 full waves
in the whole run. Since the whole run consists of 2000 computed steps there are 135.01
computed steps per shortest wavelength. The maximum of h compatible with stability
is π steps per shortest wavelength, so that a safety factor of 43 seems to have built in.
Actually, increasing the step by a factor 1.57 makes the solution explode. The reason for
this is a very small component of ψ with energies up to ‖H ‖ as discussed already near
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Figure 9: εscaled superposed from three runs of the crossway system

equation (80). Notice that these energies are 27 larger than those which determine the
obvious wave structure of curve ν̃. One will never notice this tiny high energy contri-
bution if h is small enough to forbid this contribution to grow. That we see the shortest
wave only in bursts, with calm regions in between, results from the interplay of broad-
ening and traveling of the Gaussian wave packet. It is not related to interaction of the
particles and also not to the energy levels of particle 2.

6 Conclusion

The present treatment of computational quantum dynamics comes close to satisfying
for this particular problem what I consider a natural task for computational physics:
Find for those basic notions of theoretical physics that are concerned with evolution of
systems in time the programmable versions which execute effectively without making
use of structures outside the basic physical framework. In our example of quantum
dynamics this means that the Hamilton operator has to enter as an object that acts on
states and by no functionality else.

I found this task amenable for celestial mechanics, rigid body dynamics, the dynam-
ics of granular media, non-relativistic quantum dynamics of n-body systems interact-
ing by pair potentials, and I expect that relativistic wave mechanics can be treated along
these lines.

My impression is that C++ is the programming language that comes closest to the
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needs of such an enterprise. The strong points of C++ here are: templates, operator
overloading, standard containers, and lambda abstraction (provided by some library).

Acknowledgments

I thankfully remember discussions with the late Professor Fritz Bopp who explained
his vision concerning quantum mechanics in finite dimensional spaces. I’m grateful
to many of my former industry colleagues, who helped me to become a productive
programmer. Particularly, these were Rainer Braendle, Dieter Horlacher, Martin Lan-
dis, and Thomas Dera. Finally, I acknowledge furthering discussions with Felix Lev on
Galois Fields in quantum theory.

References

[1] U. Mutze: Relativistic quantum mechanics of n-particle systems with cluster-
separable interactions, Phys. Rev. D, Vol. 29, 2255-2269, 1984

[2] Felix Lev: Quantum Theory over a Galois Field and Spin-statistics theorem hep-
th/0209001

[3] Ulrich Mutze: Predicting Classical Motion Directly from the Action Principle II,
Mathematical Physics Preprint Archive 1999–271

www.ma.utexas.edu/mp_arc/c/99/99-271.pdf

[4] Ulrich Mutze: A Simple Variational Integrator for General Holonomic Mechanical
Systems, Mathematical Physics Preprint Archive 2003–491

www.ma.utexas.edu/mp_arc/c/03/03-491.pdf

[5] Ulrich Mutze: Rigidly connected overlapping spherical particles: a versatile grain
model, Granular Matter Vol. 8, 185-194, 2006

[6] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery: Nu-
merical Recipes in C, Second Edition, Cambridge University Press 1992

[7] Peter Lynch: The Swinging Spring

http://mathsci.ucd.ie/˜plynch/SwingingSpring/doublespring.html

[8] DoRon B. Motter:Reversible Simulation and Visualization of Quantum Evolution

www.cise.ufl.edu/research/revcomp/Motter-sch/short-report.pdf

[9] Werner O. Amrein, Josef M. Jauch, Kalyan B. Sinha: Scattering Theory in Quantum
Mechanics, Benjamin 1977


	Introduction
	A simple framework for computational quantum mechanics
	Defining the direct midpoint integrator
	Properties of the direct midpoint integrator
	Invariance under motion reversal
	Explicit representation
	Conservation of energy and semi-conservation of the norm of the initial state

	Simulating the crossway system
	Requirements on the number of discretization points
	Results from a typical simulation run

	Conclusion

