
Exploding Equation and High Precision Numbers

Ulrich Mutze ,www.ulrichmutze.de, 2010-01-14

We consider the differential equation â

ât
h(t) = hHtL2 with the initial condition h(0)=1. The solution obvi-

ously is h(t) = 1
1-t

 and thus tends to infinity as t tends to 1. We now consider the discrete approximation to

this solution as provided by the asynchronous leap-frog method. Since the evolution step does not involve
potentially undefined operations, any such discrete approximation is well-defined for all its t-value (which

we assume here to form an equidistant chain tn = n dt). Of course, these values will grow dramatically

and will soon transcend what can be represented even with Mathematica's arbitrary precision numbers.
Since the asynchronous leap-frog method is a reversible integration method, we should be able to go on
each finite discrete trajectory back to its initial point. If the final point was 'close to infinity' the computa-
tion needs to be done with a large number of digits in order to come back to the initial point. This is what
the following interactive graphics allows to study.
As this graphics is set up, it shows a reversible trajectory. Switching to using machine precision shows that
that the trajectory in forward direction is created completely but the reversed part consists of a single point
(although no overflow is reported).

In[1]:= f@y_D := y * y H* defines the right-hand side of the differential equation *L
dis@y_D := Log10@Log10@yD + 1D H* quantity for graphical representation, dis@1D�0 *L

In[3]:= step@state@x_, v_, t_D, dt_D :=

H* evolution step for the asynchronous leap-frog integrator *L
Module@8Τ = dt � 2, ta = t, xa = x, va = v<,

H* Replacing dt�2 by dt*0.5 lets the following

computation no longer depend on 'precision' Hwhat is n o t wantedL.*L
ta += Τ;

xa += va Τ;

va = 2 f@xaD - va;

xa += va Τ;

H*Print@xaD*L
H* The last value before overflow turned out to be 1.821048...*10^174965752 both for

useMachinePrecision�True and useMachinePrecision�False. In the latter case the

number of the further digits depends on precision *L
ta += Τ;

state@xa, va, taD H* return value *L
D

time@state@x_, v_, t_DD := t H* access to state data *L
h@state@x_, v_, t_DD := x H* access to state data *L

Manipulate@Module@8i, c0, c1, rangeStep, tMax, dt, x0, t0, v0, h0, s0, val, valr, lp, lpr<,
H* The basic interactive functionality of the notebook *L
c0 = If@useMachinePrecision, N@0D, N@0, precisionDD;
c1 = If@useMachinePrecision, N@1D, N@1, precisionDD;
H* should make all the following computation to be done with that precision *L
t0 = c0;

x0 = c1;

rangeStep = c1 � 100;

H*rangeStep=c1*0.01;*L
H* Replacing the previous definition by the present one lets the following

computation no longer depend on 'precision'

Hwhat is n o t wantedL. The general rule seems to

be that floating point numbers, written with a decimal

point enforce using machine precision

computation in all expressions which depend on that floating point number *L
tMax = c1 + rangeStep* range;

dt = tMax � nSteps;

v0 = f@x0D;
s0 = state@x0, v0, t0D;
h0 = x0; val = 88t0, dis@h0D<<; i = 0;

While@i < nSteps, s0 = step@s0, dtD;
t0 = time@s0D; h0 = h@s0D; val = Append@val, 8t0, dis@h0D<D; i++D;

lp = ListLinePlot@val, PlotStyle ® Green, PlotRange ® All,

AxesLabel ® 8t, log@1 + log@h@tDDD<,
PlotLabel ® "Approximative solution of the exploding equation.

Red dots mark the reversed trajectory.

Try the useMachinePrecision-box ! "D;
valr = 88t0, dis@h0D<<; i = 0;

While@i < nSteps, s0 = step@s0, -dtD;
t0 = time@s0D; h0 = h@s0D; valr = Append@valr, 8t0, dis@h0D<D; i++D;

lpr = ListPlot@valr, PlotStyle ® Red, PlotRange ® AllD;
H*doing a list plot of the reverse motion *L
Show@8lp, lpr<DD,

8useMachinePrecision, 8False, True<<, 88precision, 1400<, 10, 2000<,
88range, 1<, -10, 2<, 88nSteps, 1000<, 1, 1000, 1<

D

2 exploding.nb

Out[6]=

useMachinePrecision

precision

range

nSteps

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

2.0

2.5

logHlogHhHtLL + 1L

Approximativesolution of the exploding equation.

Red dots mark the reversed trajectory.

Try the useMachinePrecision-box !

In[7]:= 8"Case where machine precision is superior" ¦

8nSteps = 49, precision = 20.`, range = 1, useMachinePrecision= False<<
Out[7]= 8Case where machine precision is superior ¦

8nSteps = 49, precision = 20., range = 1, useMachinePrecision= False<<

exploding.nb 3

